Timezone: »
Robust Generalised Bayesian Inference for Intractable Likelihoods
Takuo Matsubara · Jeremias Knoblauch · Francois-Xavier Briol · Chris Oates
Generalised Bayesian inference updates prior beliefs using a loss function, rather than a likelihood, and can therefore be used to confer robustness against possible misspecification of the likelihood. Here we consider generalised Bayesian inference with a Stein discrepancy as a loss function, motivated by applications in which the likelihood contains an intractable normalisation constant. In this context, the Stein discrepancy circumvents evaluation of the normalisation constant and produces generalised posteriors that are either closed form or accessible using standard Markov chain Monte Carlo.
Author Information
Takuo Matsubara (Newcastle University, UK)
Jeremias Knoblauch (Warwick University)
Francois-Xavier Briol (Alan Turing Institute)
Chris Oates (Newcastle University)
More from the Same Authors
-
2021 : Composite Goodness-of-fit Tests with Kernels »
Oscar Key · Tamara Fernandez · Arthur Gretton · Francois-Xavier Briol -
2021 : Robust Bayesian Inference for Simulator-based Models via the MMD Posterior Bootstrap »
Harita Dellaporta · Jeremias Knoblauch · Theodoros Damoulas · Francois-Xavier Briol -
2021 : A General Method for Calibrating Stochastic Radio Channel Models with Kernels »
Ayush Bharti · Francois-Xavier Briol -
2021 Poster: Black Box Probabilistic Numerics »
Onur Teymur · Christopher Foley · Philip Breen · Toni Karvonen · Chris Oates -
2018 Poster: Doubly Robust Bayesian Inference for Non-Stationary Streaming Data with $\beta$-Divergences »
Jeremias Knoblauch · Jack E Jewson · Theodoros Damoulas -
2017 Poster: Probabilistic Models for Integration Error in the Assessment of Functional Cardiac Models »
Chris Oates · Steven Niederer · Angela Lee · François-Xavier Briol · Mark Girolami