Timezone: »
Invariant Priors for Bayesian Quadrature
Masha Naslidnyk · Javier González · Maren Mahsereci
Bayesian quadrature (BQ) is a model-based numerical integration method that is able to increase sample efficiency by encoding and leveraging known structure of the integration task at hand. In this paper, we explore priors that encode invariance of the integrand under a set of bijective transformations in the input domain, in particular some unitary transformations, such as rotations, axis-flips, or point symmetries. We show initial results on superior performance in comparison to standard Bayesian quadrature on several synthetic and one real world application.
Author Information
Masha Naslidnyk (UCL)
Javier González (Microsoft Research Cambridge)
Maren Mahsereci (University of Tübingen)
More from the Same Authors
-
2022 Poster: RKHS-SHAP: Shapley Values for Kernel Methods »
Siu Lun Chau · Robert Hu · Javier González · Dino Sejdinovic -
2021 : Invariant Priors for Bayesian Quadrature »
Masha Naslidnyk -
2021 : Panel »
Mohammad Emtiyaz Khan · Atoosa Kasirzadeh · Anna Rogers · Javier González · Suresh Venkatasubramanian · Robert Williamson -
2021 Poster: Dynamic Causal Bayesian Optimization »
Virginia Aglietti · Neil Dhir · Javier González · Theodoros Damoulas -
2021 Poster: BayesIMP: Uncertainty Quantification for Causal Data Fusion »
Siu Lun Chau · Jean-Francois Ton · Javier González · Yee Teh · Dino Sejdinovic -
2020 Poster: BOSS: Bayesian Optimization over String Spaces »
Henry Moss · David Leslie · Daniel Beck · Javier González · Paul Rayson -
2020 Poster: Multi-task Causal Learning with Gaussian Processes »
Virginia Aglietti · Theodoros Damoulas · Mauricio Álvarez · Javier González -
2020 Spotlight: BOSS: Bayesian Optimization over String Spaces »
Henry Moss · David Leslie · Daniel Beck · Javier González · Paul Rayson -
2019 Poster: Meta-Surrogate Benchmarking for Hyperparameter Optimization »
Aaron Klein · Zhenwen Dai · Frank Hutter · Neil Lawrence · Javier González