Timezone: »
Climate change is expected to increase the likelihood of drought events, with severe implications for food security. Unlike other natural disasters, droughts have a slow onset and depend on various external factors, making drought detection in climate data difficult. In contrast to existing works that rely on simple relative drought indices as ground-truth data, we build upon soil moisture index (SMI) obtained from a hydrological model. This index is directly related to insufficiently available water to vegetation. Given ERA5-Land climate input data of six months with land use information from MODIS satellite observation, we compare different models with and without sequential inductive bias in classifying droughts based on SMI. We use PR-AUC as the evaluation measure to account for the class imbalance and obtain promising results despite a challenging time-based split. We further show in an ablation study that the models retain their predictive capabilities given input data of coarser resolutions, as frequently encountered in climate models.
Author Information
Julia Gottfriedsen (DLR)
Max Berrendorf (Ludwig-Maximilians-Universität München)
Pierre Gentine (Columbia University)
Markus Reichstein (Max Planck Institute for Biogeochemistry, Jena; Michael Stifel Center Jena for Data-Driven and Simulation Science, Jena)
Katja Weigel (University of Bremen)
Birgit Hassler (DLR)
Veronika Eyring (Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany; University of Bremen, Institute of Environmental Physics (IUP), Bremen, Germany)
More from the Same Authors
-
2022 : Learning to forecast vegetation greenness at fine resolution over Africa with ConvLSTMs »
Claire Robin · Christian Requena-Mesa · Vitus Benson · Jeran Poehls · Lazaro Alonzo · Nuno Carvalhais · Markus Reichstein -
2022 : Learning to forecast vegetation greenness at fine resolution over Africa with ConvLSTMs »
Claire Robin · Christian Requena-Mesa · Vitus Benson · Lazaro Alonzo · Jeran Poehls · Nuno Carvalhais · Markus Reichstein -
2022 : Machine-learning, distribution shifts and extrapolation in the Earth System »
Markus Reichstein -
2020 : Q/A and Discussion for Water Session »
Surya Karthik Mukkavilli · Pierre Gentine · Grey Nearing -
2020 : Pierre Gentine »
Pierre Gentine -
2020 Workshop: AI for Earth Sciences »
Surya Karthik Mukkavilli · Johanna Hansen · Natasha Dudek · Tom Beucler · Kelly Kochanski · Mayur Mudigonda · Karthik Kashinath · Amy McGovern · Paul D Miller · Chad Frischmann · Pierre Gentine · Gregory Dudek · Aaron Courville · Daniel Kammen · Vipin Kumar