Timezone: »
Global warming leads to the increase in frequency and intensity of climate extremes that cause tremendous loss of lives and property. Accurate long-range climate prediction allows more time for preparation and disaster risk management for such extreme events. Although machine learning approaches have shown promising results in long-range climate forecasting, the associated model uncertainties may reduce their reliability. To address this issue, we propose a late fusion approach that systematically combines the predictions from multiple models to reduce the expected errors of the fused results. We also propose a network architecture with the novel denormalization layer to gain the benefits of data normalization without actually normalizing the data. The experimental results on long-range 2m temperature forecasting show that the framework outperforms the 30-year climate normals, and the accuracy can be improved by increasing the number of models.
Author Information
Ken C. L. Wong (IBM Research – Almaden Research Center)
Hongzhi Wang (IBM Almaden Research Center)
Etienne Vos (IBM)
Bianca Zadrozny (IBM Research)
Campbell Watson (IBM Research)
I'm an atmospheric scientist at IBM Research where my research spans climate, weather and water. I was a postdoc at Yale University with Prof. Ron Smith, and completed a PhD at the University of Melbourne with Prof. Todd Lane. Currently leading AI for Climate initiatives with the Future of Climate at IBM Research.
Tanveer Syeda-Mahmood (IBM Almaden Research Center)
More from the Same Authors
-
2020 : Investigating two super-resolution methods for downscaling precipitation: ESRGAN and CAR »
Campbell Watson -
2020 : Long-Range Seasonal Forecasting of 2m-Temperature with Machine Learning »
Etienne Vos -
2022 : Physics-Constrained Deep Learning for Climate Downscaling »
Paula Harder · Qidong Yang · Venkatesh Ramesh · Prasanna Sattigeri · Alex Hernandez-Garcia · Campbell Watson · Daniela Szwarcman · David Rolnick -
2022 : Image-Based Soil Organic Carbon Estimation from Multispectral Satellite Images with Fourier Neural Operator and Structural Similarity »
Ken C. L. Wong · · Ademir Ferreira da Silva · Hongzhi Wang · Jitendra Singh · Tanveer Syeda-Mahmood -
2022 : Controllable Generation for Climate Modeling »
Moulik Choraria · Daniela Szwarcman · Bianca Zadrozny · Campbell Watson · Lav Varshney -
2022 : Generating physically-consistent high-resolution climate data with hard-constrained neural networks »
Paula Harder · Qidong Yang · Venkatesh Ramesh · Prasanna Sattigeri · Alex Hernandez-Garcia · Campbell Watson · Daniela Szwarcman · David Rolnick -
2022 : FIRO: A Deep-neural Network for Wildfire Forecast with Interpretable Hidden States »
Eduardo Rodrigues · Campbell Watson · Bianca Zadrozny · Gabrielle Nyirjesy -
2022 : Aboveground carbon biomass estimate with Physics-informed deep network »
Juan Nathaniel · · Campbell Watson · Gabrielle Nyirjesy · Conrad Albrecht -
2022 : Direct Sampling for extreme weather generation »
Jorge Luis Guevara Diaz · Bianca Zadrozny · Campbell Watson · Daniela Szwarcman · Debora Lima · Dilermando Queiroz · Leonardo Tizzei · Maria Garcia · Maysa Macedo · Priscilla Avegliano -
2022 : FIRO: A Deep-neural Network for Wildfire Forecast with Interpretable Hidden States »
Eduardo Rodrigues · Campbell Watson · Bianca Zadrozny · Gabrielle Nyirjesy -
2022 : Invited talk (Dr Bianca Zadrozny) - "Machine Learning for Climate Risk" »
Bianca Zadrozny -
2017 : Role of AI and Deep Learning in Radiology (IBM) »
Tanveer Syeda-Mahmood