`

Timezone: »

 
Hierarchical Few-Shot Imitation with Skill Transition Models
Kourosh Hakhamaneshi · Ruihan Zhao · Albert Zhan · Pieter Abbeel · Misha Laskin
Event URL: https://openreview.net/forum?id=0nW7xnWnam »

A desirable property of autonomous agents is the ability to both solve long-horizon problems and generalize to unseen tasks. Recent advances in data-driven skill learning have shown that extracting behavioral priors from offline data can enable agents to solve challenging long-horizon tasks with reinforcement learning. However, generalization to tasks unseen during behavioral prior training remains an outstanding challenge. To this end, we present Few-shot Imitation with Skill Transition Models (FIST), an algorithm that extracts skills from offline data and utilizes them to generalize to unseen tasks given a few demonstrations at test-time. FIST learns an inverse skill dynamics model and utilizes a semi-parametric approach for imitation. We show that FIST is capable of generalizing to new tasks and substantially outperforms prior baselines in navigation experiments requiring traversing unseen parts of a large maze and 7-DoF robotic arm experiments requiring manipulating previously unseen objects in a kitchen.

Author Information

Kourosh Hakhamaneshi (University of California Berkeley)
Ruihan Zhao (University of California, Berkeley)
Albert Zhan (University of California, Berkeley)
Pieter Abbeel (UC Berkeley & Covariant)

Pieter Abbeel is Professor and Director of the Robot Learning Lab at UC Berkeley [2008- ], Co-Director of the Berkeley AI Research (BAIR) Lab, Co-Founder of covariant.ai [2017- ], Co-Founder of Gradescope [2014- ], Advisor to OpenAI, Founding Faculty Partner AI@TheHouse venture fund, Advisor to many AI/Robotics start-ups. He works in machine learning and robotics. In particular his research focuses on making robots learn from people (apprenticeship learning), how to make robots learn through their own trial and error (reinforcement learning), and how to speed up skill acquisition through learning-to-learn (meta-learning). His robots have learned advanced helicopter aerobatics, knot-tying, basic assembly, organizing laundry, locomotion, and vision-based robotic manipulation. He has won numerous awards, including best paper awards at ICML, NIPS and ICRA, early career awards from NSF, Darpa, ONR, AFOSR, Sloan, TR35, IEEE, and the Presidential Early Career Award for Scientists and Engineers (PECASE). Pieter's work is frequently featured in the popular press, including New York Times, BBC, Bloomberg, Wall Street Journal, Wired, Forbes, Tech Review, NPR.

Misha Laskin (UC Berkeley)

More from the Same Authors