Timezone: »
While deep reinforcement learning methods have shown impressive results in robot learning, their sample inefficiency makes the learning of complex, long-horizon behaviors with real robot systems infeasible. To mitigate this issue, meta-reinforcement learning methods aim to enable fast learning on novel tasks by learning how to learn. Yet, the application has been limited to short-horizon tasks with dense rewards. To enable learning long-horizon behaviors, recent works have explored leveraging prior experience in the form of offline datasets without reward or task annotations. While these approaches yield improved sample efficiency, millions of interactions with environments are still required to solve complex tasks. In this work, we devise a method that enables meta-learning on long-horizon, sparse-reward tasks, allowing us to solve unseen target tasks with orders of magnitude fewer environment interactions. Our core idea is to leverage prior experience extracted from offline datasets during meta-learning. Specifically, we propose to (1) extract reusable skills and a skill prior from offline datasets, (2) meta-train a high-level policy that learns to efficiently compose learned skills into long-horizon behaviors, and (3) rapidly adapt the meta-trained policy to solve an unseen target task. Experimental results on continuous control tasks in navigation and manipulation demonstrate that the proposed method can efficiently solve long-horizon novel target tasks by combining the strengths of meta-learning and the usage of offline datasets, while prior approaches in RL, meta-RL, and multi-task RL require substantially more environment interactions to solve the tasks.
Author Information
Taewook Nam (KAIST)
Shao-Hua Sun (University of Southern California)
Karl Pertsch (University of Southern California)
Sung Ju Hwang (KAIST, AITRICS)
Joseph Lim (MIT)
More from the Same Authors
-
2021 Spotlight: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning »
Hayeon Lee · Sewoong Lee · Song Chong · Sung Ju Hwang -
2021 Spotlight: Task-Adaptive Neural Network Search with Meta-Contrastive Learning »
Wonyong Jeong · Hayeon Lee · Geon Park · Eunyoung Hyung · Jinheon Baek · Sung Ju Hwang -
2021 : Task-Induced Representation Learning »
Jun Yamada · Karl Pertsch · Anisha Gunjal · Joseph Lim -
2021 : Skill-based Meta-Reinforcement Learning »
Taewook Nam · Shao-Hua Sun · Karl Pertsch · Sung Ju Hwang · Joseph Lim -
2022 Poster: Learning to Generate Inversion-Resistant Model Explanations »
Hoyong Jeong · Suyoung Lee · Sung Ju Hwang · Sooel Son -
2022 : SPRINT: Scalable Semantic Policy Pre-training via Language Instruction Relabeling »
Jesse Zhang · Karl Pertsch · Jiahui Zhang · Taewook Nam · Sung Ju Hwang · Xiang Ren · Joseph Lim -
2022 : SPRINT: Scalable Semantic Policy Pre-training via Language Instruction Relabeling »
Jesse Zhang · Karl Pertsch · Jiahui Zhang · Taewook Nam · Sung Ju Hwang · Xiang Ren · Joseph Lim -
2022 Poster: Factorized-FL: Personalized Federated Learning with Parameter Factorization & Similarity Matching »
Wonyong Jeong · Sung Ju Hwang -
2022 Poster: Graph Self-supervised Learning with Accurate Discrepancy Learning »
Dongki Kim · Jinheon Baek · Sung Ju Hwang -
2022 Poster: Set-based Meta-Interpolation for Few-Task Meta-Learning »
Seanie Lee · Bruno Andreis · Kenji Kawaguchi · Juho Lee · Sung Ju Hwang -
2021 Poster: Edge Representation Learning with Hypergraphs »
Jaehyeong Jo · Jinheon Baek · Seul Lee · Dongki Kim · Minki Kang · Sung Ju Hwang -
2021 Poster: Hit and Lead Discovery with Explorative RL and Fragment-based Molecule Generation »
Soojung Yang · Doyeong Hwang · Seul Lee · Seongok Ryu · Sung Ju Hwang -
2021 Poster: Learning to Synthesize Programs as Interpretable and Generalizable Policies »
Dweep Trivedi · Jesse Zhang · Shao-Hua Sun · Joseph Lim -
2021 Poster: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning »
Hayeon Lee · Sewoong Lee · Song Chong · Sung Ju Hwang -
2021 Poster: Task-Adaptive Neural Network Search with Meta-Contrastive Learning »
Wonyong Jeong · Hayeon Lee · Geon Park · Eunyoung Hyung · Jinheon Baek · Sung Ju Hwang -
2021 Poster: Mini-Batch Consistent Slot Set Encoder for Scalable Set Encoding »
Bruno Andreis · Jeffrey Willette · Juho Lee · Sung Ju Hwang -
2021 Poster: Generalizable Imitation Learning from Observation via Inferring Goal Proximity »
Youngwoon Lee · Andrew Szot · Shao-Hua Sun · Joseph Lim -
2020 : Contributed Talk: Accelerating Reinforcement Learning with Learned Skill Priors »
Karl Pertsch · Youngwoon Lee · Joseph Lim -
2020 : Contributed Talk 1 - "Accelerating Reinforcement Learning with Learned Skill Priors" (Best Paper Runner-Up) »
Karl Pertsch -
2020 Poster: Long-Horizon Visual Planning with Goal-Conditioned Hierarchical Predictors »
Karl Pertsch · Oleh Rybkin · Frederik Ebert · Shenghao Zhou · Dinesh Jayaraman · Chelsea Finn · Sergey Levine -
2019 Poster: Multimodal Model-Agnostic Meta-Learning via Task-Aware Modulation »
Risto Vuorio · Shao-Hua Sun · Hexiang Hu · Joseph Lim -
2019 Spotlight: Multimodal Model-Agnostic Meta-Learning via Task-Aware Modulation »
Risto Vuorio · Shao-Hua Sun · Hexiang Hu · Joseph Lim -
2016 : Knowledge Acquisition for Visual Question Answering via Iterative Querying »
Yuke Zhu · Joseph Lim · Li Fei-Fei -
2016 Workshop: 3D Deep Learning »
Fisher Yu · Joseph Lim · Matthew D Fisher · Qixing Huang · Jianxiong Xiao -
2015 Poster: Galileo: Perceiving Physical Object Properties by Integrating a Physics Engine with Deep Learning »
Jiajun Wu · Ilker Yildirim · Joseph Lim · Bill Freeman · Josh Tenenbaum -
2011 Poster: Transfer Learning by Borrowing Examples »
Joseph Lim · Russ Salakhutdinov · Antonio Torralba