Timezone: »
Efficiency in robot learning is highly dependent on hyperparameters. Robot morphology and task structure differ widely and finding the optimal setting typically requires sequential or parallel repetition of experiments, strongly increasing the interaction count. We propose a training method that only relies on a single trial by enabling agents to select and combine controller designs conditioned on the task. Our Hyperparameter Mixture Policies (HMPs) feature diverse sub-policies that vary in distribution types and parameterization, reducing the impact of design choices and unlocking synergies between low-level components. We demonstrate strong performance on the DeepMind Control Suite, Meta-World tasks and a simulated ANYmal robot, showing that HMPs yield robust, data-efficient learning.
Author Information
Tim Seyde (MIT CSAIL)
Wilko Schwarting (Massachusetts Institute of Technology)
Igor Gilitschenski (University of Toronto)
Markus Wulfmeier (DeepMind)
Daniela Rus (Massachusetts Institute of Technology)
More from the Same Authors
-
2021 : Learning Transferable Motor Skills with Hierarchical Latent Mixture Policies »
Dushyant Rao · Fereshteh Sadeghi · Leonard Hasenclever · Markus Wulfmeier · Martina Zambelli · Giulia Vezzani · Dhruva Tirumala · Yusuf Aytar · Josh Merel · Nicolas Heess · Raia Hadsell -
2021 : Wish you were here: Hindsight Goal Selection for long-horizon dexterous manipulation »
Todor Davchev · Oleg Sushkov · Jean-Baptiste Regli · Stefan Schaal · Yusuf Aytar · Markus Wulfmeier · Jonathan Scholz -
2021 : Neighborhood Mixup Experience Replay: Local Convex Interpolation for Improved Sample Efficiency in Continuous Control Tasks »
Ryan Sander · Wilko Schwarting · Tim Seyde · Igor Gilitschenski · Sertac Karaman · Daniela Rus -
2022 : PyHopper - A Plug-and-Play Hyperparameter Optimization Engine »
Mathias Lechner · Ramin Hasani · Sophie Neubauer · Philipp Neubauer · Daniela Rus -
2022 : Are All Vision Models Created Equal? A Study of the Open-Loop to Closed-Loop Causality Gap »
Mathias Lechner · Ramin Hasani · Alexander Amini · Tsun-Hsuan Johnson Wang · Thomas Henzinger · Daniela Rus -
2022 : Infrastructure-based End-to-End Learning and Prevention of Driver Failure »
Noam Buckman · Shiva Sreeram · Mathias Lechner · Yutong Ban · Ramin Hasani · Sertac Karaman · Daniela Rus -
2022 : Capsa: A Unified Framework for Quantifying Risk in Deep Neural Networks »
Sadhana Lolla · Iaroslav Elistratov · Alejandro Perez · Elaheh Ahmadi · Daniela Rus · Alexander Amini -
2022 : Infrastructure-based End-to-End Learning and Prevention of Driver Failure »
Noam Buckman · Shiva Sreeram · Mathias Lechner · Yutong Ban · Ramin Hasani · Sertac Karaman · Daniela Rus -
2022 : Capsa: A Unified Framework for Quantifying Risk in Deep Neural Networks »
Sadhana Lolla · Iaroslav Elistratov · Alejandro Perez · Elaheh Ahmadi · Daniela Rus · Alexander Amini -
2022 Workshop: 5th Robot Learning Workshop: Trustworthy Robotics »
Alex Bewley · Roberto Calandra · Anca Dragan · Igor Gilitschenski · Emily Hannigan · Masha Itkina · Hamidreza Kasaei · Jens Kober · Danica Kragic · Nathan Lambert · Julien PEREZ · Fabio Ramos · Ransalu Senanayake · Jonathan Tompson · Vincent Vanhoucke · Markus Wulfmeier -
2022 Poster: Efficient Dataset Distillation using Random Feature Approximation »
Noel Loo · Ramin Hasani · Alexander Amini · Daniela Rus -
2022 Poster: Evolution of Neural Tangent Kernels under Benign and Adversarial Training »
Noel Loo · Ramin Hasani · Alexander Amini · Daniela Rus -
2022 Poster: ActionSense: A Multimodal Dataset and Recording Framework for Human Activities Using Wearable Sensors in a Kitchen Environment »
Joseph DelPreto · Chao Liu · Yiyue Luo · Michael Foshey · Yunzhu Li · Antonio Torralba · Wojciech Matusik · Daniela Rus -
2021 Workshop: 4th Robot Learning Workshop: Self-Supervised and Lifelong Learning »
Alex Bewley · Masha Itkina · Hamidreza Kasaei · Jens Kober · Nathan Lambert · Julien PEREZ · Ransalu Senanayake · Vincent Vanhoucke · Markus Wulfmeier · Igor Gilitschenski -
2021 Poster: Sparse Flows: Pruning Continuous-depth Models »
Lucas Liebenwein · Ramin Hasani · Alexander Amini · Daniela Rus -
2021 Poster: Compressing Neural Networks: Towards Determining the Optimal Layer-wise Decomposition »
Lucas Liebenwein · Alaa Maalouf · Dan Feldman · Daniela Rus -
2021 Poster: Causal Navigation by Continuous-time Neural Networks »
Charles Vorbach · Ramin Hasani · Alexander Amini · Mathias Lechner · Daniela Rus -
2021 Poster: Is Bang-Bang Control All You Need? Solving Continuous Control with Bernoulli Policies »
Tim Seyde · Igor Gilitschenski · Wilko Schwarting · Bartolomeo Stellato · Martin Riedmiller · Markus Wulfmeier · Daniela Rus -
2020 Workshop: 3rd Robot Learning Workshop »
Masha Itkina · Alex Bewley · Roberto Calandra · Igor Gilitschenski · Julien PEREZ · Ransalu Senanayake · Markus Wulfmeier · Vincent Vanhoucke -
2020 Poster: Deep Evidential Regression »
Alexander Amini · Wilko Schwarting · Ava P Soleimany · Daniela Rus -
2019 : Towards Robust Interactive Autonomy »
Igor Gilitschenski -
2019 Workshop: Robot Learning: Control and Interaction in the Real World »
Roberto Calandra · Markus Wulfmeier · Kate Rakelly · Sanket Kamthe · Danica Kragic · Stefan Schaal · Markus Wulfmeier -
2019 Poster: Learning-In-The-Loop Optimization: End-To-End Control And Co-Design Of Soft Robots Through Learned Deep Latent Representations »
Andrew Spielberg · Allan Zhao · Yuanming Hu · Tao Du · Wojciech Matusik · Daniela Rus -
2017 Workshop: Acting and Interacting in the Real World: Challenges in Robot Learning »
Ingmar Posner · Raia Hadsell · Martin Riedmiller · Markus Wulfmeier · Rohan Paul -
2016 Poster: Dimensionality Reduction of Massive Sparse Datasets Using Coresets »
Dan Feldman · Mikhail Volkov · Daniela Rus -
2014 Poster: Coresets for k-Segmentation of Streaming Data »
Guy Rosman · Mikhail Volkov · Dan Feldman · John Fisher III · Daniela Rus