Timezone: »
Many exploration strategies are built upon the optimism in the face of the uncertainty (OFU) principle for reinforcement learning. However, without considering the aleatoric uncertainty, existing methods may over-explore the state-action pairs with large randomness and hence are non-robust. In this paper, we explicitly capture the aleatoric uncertainty from a distributional perspective and propose an information-theoretic exploration method named Optimistic Value Distribution Explorer (OVD-Explorer). OVD-Explorer follows the OFU principle, but more importantly, it avoids exploring the areas with high aleatoric uncertainty through maximizing the mutual information between policy and the upper bounds of policy's returns. Furthermore, to make OVD-Explorer tractable for continuous RL, we derive a closed form solution, and integrate it with SAC, which, to our knowledge, for the first time alleviates the negative impact on exploration caused by aleatoric uncertainty for continuous RL. Empirical evaluations on the commonly used Mujoco benchmark and a novel GridChaos task demonstrate that OVD-Explorer can alleviate over-exploration and outperform state-of-the-art methods.
Author Information
Jinyi Liu (Tianjin University)
Zhi Wang (Huawei Technologies Ltd.)
YAN ZHENG (Tianjin University)
Jianye Hao (Tianjin University)
Junjie Ye (The Chinese University of Hong Kong)
Chenjia Bai (Harbin Institute of Technology)
Pengyi Li (Tianjin University)
More from the Same Authors
-
2021 : HyAR: Addressing Discrete-Continuous Action Reinforcement Learning via Hybrid Action Representation »
Boyan Li · Hongyao Tang · YAN ZHENG · Jianye Hao · Pengyi Li · Zhaopeng Meng · LI Wang -
2021 : PMIC: Improving Multi-Agent Reinforcement Learning with Progressive Mutual Information Collaboration »
Pengyi Li · Hongyao Tang · Tianpei Yang · Xiaotian Hao · Sang Tong · YAN ZHENG · Jianye Hao · Matthew Taylor · Jinyi Liu -
2022 : Towards A Unified Policy Abstraction Theory and Representation Learning Approach in Markov Decision Processes »
Min Zhang · Hongyao Tang · Jianye Hao · YAN ZHENG -
2022 : EUCLID: Towards Efficient Unsupervised Reinforcement Learning with Multi-choice Dynamics Model »
Yifu Yuan · Jianye Hao · Fei Ni · Yao Mu · YAN ZHENG · Yujing Hu · Jinyi Liu · Yingfeng Chen · Changjie Fan -
2022 : ERL-Re$^2$: Efficient Evolutionary Reinforcement Learning with Shared State Representation and Individual Policy Representation »
Pengyi Li · Hongyao Tang · Jianye Hao · YAN ZHENG · Xian Fu · Zhaopeng Meng -
2022 Spotlight: Lightning Talks 5A-3 »
Minting Pan · Xiang Chen · Wenhan Huang · Can Chang · Zhecheng Yuan · Jianzhun Shao · Yushi Cao · Peihao Chen · Ke Xue · Zhengrong Xue · Zhiqiang Lou · Xiangming Zhu · Lei Li · Zhiming Li · Kai Li · Jiacheng Xu · Dongyu Ji · Ni Mu · Kun Shao · Tianpei Yang · Kunyang Lin · Ningyu Zhang · Yunbo Wang · Lei Yuan · Bo Yuan · Hongchang Zhang · Jiajun Wu · Tianze Zhou · Xueqian Wang · Ling Pan · Yuhang Jiang · Xiaokang Yang · Xiaozhuan Liang · Hao Zhang · Weiwen Hu · Miqing Li · YAN ZHENG · Matthew Taylor · Huazhe Xu · Shumin Deng · Chao Qian · YI WU · Shuncheng He · Wenbing Huang · Chuanqi Tan · Zongzhang Zhang · Yang Gao · Jun Luo · Yi Li · Xiangyang Ji · Thomas Li · Mingkui Tan · Fei Huang · Yang Yu · Huazhe Xu · Dongge Wang · Jianye Hao · Chuang Gan · Yang Liu · Luo Si · Hangyu Mao · Huajun Chen · Jianye Hao · Jun Wang · Xiaotie Deng -
2022 Spotlight: GALOIS: Boosting Deep Reinforcement Learning via Generalizable Logic Synthesis »
Yushi Cao · Zhiming Li · Tianpei Yang · Hao Zhang · YAN ZHENG · Yi Li · Jianye Hao · Yang Liu -
2022 Poster: GALOIS: Boosting Deep Reinforcement Learning via Generalizable Logic Synthesis »
Yushi Cao · Zhiming Li · Tianpei Yang · Hao Zhang · YAN ZHENG · Yi Li · Jianye Hao · Yang Liu -
2022 Poster: The Policy-gradient Placement and Generative Routing Neural Networks for Chip Design »
Ruoyu Cheng · Xianglong Lyu · Yang Li · Junjie Ye · Jianye Hao · Junchi Yan -
2021 : HyAR: Addressing Discrete-Continuous Action Reinforcement Learning via Hybrid Action Representation Q&A »
Boyan Li · Hongyao Tang · YAN ZHENG · Jianye Hao · Pengyi Li · Zhaopeng Meng · LI Wang -
2021 : HyAR: Addressing Discrete-Continuous Action Reinforcement Learning via Hybrid Action Representation »
Boyan Li · Hongyao Tang · YAN ZHENG · Jianye Hao · Pengyi Li · Zhaopeng Meng · LI Wang -
2021 Poster: Model-Based Reinforcement Learning via Imagination with Derived Memory »
Yao Mu · Yuzheng Zhuang · Bin Wang · Guangxiang Zhu · Wulong Liu · Jianyu Chen · Ping Luo · Shengbo Li · Chongjie Zhang · Jianye Hao -
2021 Poster: Adaptive Online Packing-guided Search for POMDPs »
Chenyang Wu · Guoyu Yang · Zongzhang Zhang · Yang Yu · Dong Li · Wulong Liu · Jianye Hao -
2021 Poster: A Hierarchical Reinforcement Learning Based Optimization Framework for Large-scale Dynamic Pickup and Delivery Problems »
Yi Ma · Xiaotian Hao · Jianye Hao · Jiawen Lu · Xing Liu · Tong Xialiang · Mingxuan Yuan · Zhigang Li · Jie Tang · Zhaopeng Meng -
2021 Poster: Flattening Sharpness for Dynamic Gradient Projection Memory Benefits Continual Learning »
Danruo DENG · Guangyong Chen · Jianye Hao · Qiong Wang · Pheng-Ann Heng -
2021 Poster: An Efficient Transfer Learning Framework for Multiagent Reinforcement Learning »
Tianpei Yang · Weixun Wang · Hongyao Tang · Jianye Hao · Zhaopeng Meng · Hangyu Mao · Dong Li · Wulong Liu · Yingfeng Chen · Yujing Hu · Changjie Fan · Chengwei Zhang -
2021 Poster: Dynamic Bottleneck for Robust Self-Supervised Exploration »
Chenjia Bai · Lingxiao Wang · Lei Han · Animesh Garg · Jianye Hao · Peng Liu · Zhaoran Wang -
2018 Poster: A Deep Bayesian Policy Reuse Approach Against Non-Stationary Agents »
YAN ZHENG · Zhaopeng Meng · Jianye Hao · Zongzhang Zhang · Tianpei Yang · Changjie Fan