Timezone: »
Deep reinforcement learning (Deep RL) has recently seen significant progress in developing algorithms for generalization. However, most algorithms target a single type of generalization setting. In this work, we study generalization across three disparate task structures: (a) tasks composed of spatial and temporal compositions of regularly occurring object motions; (b) tasks composed of active perception of and navigation towards regularly occurring 3D objects; and (c) tasks composed of navigating through sequences of regularly occurring object-configurations. These diverse task structures all share an underlying idea of compositionality: task completion always involves combining reoccurring segments of task-oriented perception and behavior. We hypothesize that an agent can generalize within a task structure if it can discover representations that capture these reoccurring task-segments. For our tasks, this corresponds to representations for recognizing individual object motions, for navigation towards 3D objects, and for navigating through object-configurations. Taking inspiration from cognitive science, we term representations for reoccurring segments of an agent's experience, "perceptual schemas". We propose Composable Perceptual Schemas (CPS), which learns a composable state representation where perceptual schemas are distributed across multiple, relatively small recurrent "subschema" modules. Our main technical novelty is an expressive attention function that enables subschemas to dynamically attend to features shared across all positions in the agent's observation. Our experiments indicate our feature-attention mechanism enables CPS to generalize better than recurrent architectures that attend to observations with spatial attention.
Author Information
Wilka Carvalho (University of Michigan)
I am a Masters student and NSF Graduate Research Fellow in the Computer Science Department at the University of Southern California. My primary research interest is the development of neuroscience- and cognitive science-informed artificial intelligence and machine learning models with brain-rivaling information-processing capabilities.
Andrew Lampinen (DeepMind)
Kyriacos Nikiforou (DeepMind)
Felix Hill (Deepmind)
Murray Shanahan (DeepMind / Imperial College London)
More from the Same Authors
-
2021 : Learning compositional tasks from language instructions »
Lajanugen Logeswaran · Wilka Carvalho · Honglak Lee -
2022 : Transformers generalize differently from information stored in context vs in weights »
Stephanie Chan · Ishita Dasgupta · Junkyung Kim · Dharshan Kumaran · Andrew Lampinen · Felix Hill -
2022 : Collaborating with language models for embodied reasoning »
Ishita Dasgupta · Christine Kaeser-Chen · Kenneth Marino · Arun Ahuja · Sheila Babayan · Felix Hill · Rob Fergus -
2022 : Collaborating with language models for embodied reasoning »
Ishita Dasgupta · Christine Kaeser-Chen · Kenneth Marino · Arun Ahuja · Sheila Babayan · Felix Hill · Rob Fergus -
2022 : Meaning without reference in large language models »
Steven Piantadosi · Felix Hill -
2022 Poster: Data Distributional Properties Drive Emergent In-Context Learning in Transformers »
Stephanie Chan · Adam Santoro · Andrew Lampinen · Jane Wang · Aaditya Singh · Pierre Richemond · James McClelland · Felix Hill -
2022 Poster: Semantic Exploration from Language Abstractions and Pretrained Representations »
Allison Tam · Neil Rabinowitz · Andrew Lampinen · Nicholas Roy · Stephanie Chan · DJ Strouse · Jane Wang · Andrea Banino · Felix Hill -
2021 Poster: Successor Feature Landmarks for Long-Horizon Goal-Conditioned Reinforcement Learning »
Christopher Hoang · Sungryull Sohn · Jongwook Choi · Wilka Carvalho · Honglak Lee -
2021 Poster: Attention over Learned Object Embeddings Enables Complex Visual Reasoning »
David Ding · Felix Hill · Adam Santoro · Malcolm Reynolds · Matt Botvinick -
2021 Poster: Multimodal Few-Shot Learning with Frozen Language Models »
Maria Tsimpoukelli · Jacob L Menick · Serkan Cabi · S. M. Ali Eslami · Oriol Vinyals · Felix Hill -
2021 Poster: Unsupervised Object-Based Transition Models For 3D Partially Observable Environments »
Antonia Creswell · Rishabh Kabra · Chris Burgess · Murray Shanahan -
2021 Poster: Towards mental time travel: a hierarchical memory for reinforcement learning agents »
Andrew Lampinen · Stephanie Chan · Andrea Banino · Felix Hill -
2021 Oral: Attention over Learned Object Embeddings Enables Complex Visual Reasoning »
David Ding · Felix Hill · Adam Santoro · Malcolm Reynolds · Matt Botvinick -
2020 : Panel »
· Wilka Carvalho · Judith Fan · Tejas Kulkarni · Christopher Xie -
2020 : Invited Talk: Wilka Carvalho »
Wilka Carvalho -
2020 Poster: What shapes feature representations? Exploring datasets, architectures, and training »
Katherine L. Hermann · Andrew Lampinen -
2018 Poster: Neural Arithmetic Logic Units »
Andrew Trask · Felix Hill · Scott Reed · Jack Rae · Chris Dyer · Phil Blunsom -
2017 : Panel Discussion »
Felix Hill · Olivier Pietquin · Jack Gallant · Raymond Mooney · Sanja Fidler · Chen Yu · Devi Parikh -
2017 : Grounded Language Learning in a Simulated 3D World »
Felix Hill -
2015 Symposium: Algorithms Among Us: the Societal Impacts of Machine Learning »
Michael A Osborne · Adrian Weller · Murray Shanahan