Timezone: »
Temporal-Difference (TD) learning methods, such as Q-Learning, have proven effective at learning a policy to perform control tasks. One issue with methods like Q-Learning is that the value update introduces bias when predicting the TD target of a unfamiliar state. Estimation noise becomes a bias after the max operator in the policy improvement step, and carries over to value estimations of other states, causing Q-Learning to overestimate the Q value. Algorithms like Soft Q-Learning (SQL) introduce the notion of a soft-greedy policy, which reduces the estimation bias via soft updates in early stages of training. However, the inverse temperature $\beta$ that controls the softness of an update is usually set by a hand-designed heuristic, which can be inaccurate at capturing the uncertainty in the target estimate. Under the belief that $\beta$ is closely related to the (state dependent) model uncertainty, Entropy Regularized Q-Learning (EQL) further introduces a principled scheduling of $\beta$ by maintaining a collection of the model parameters that characterizes model uncertainty. In this paper, we present Unbiased Soft Q-Learning (UQL), which extends the work of EQL from two action, finite state spaces to multi-action, infinite state space Markov Decision Processes. We also provide a principled numerical scheduling of $\beta$, extended from SQL and using model uncertainty, during the optimization process. We show the theoretical guarantees and the effectiveness of this update method in experiments on several discrete control environments.
Author Information
Litian Liang (University of California, Irvine)
Yaosheng Xu (University of California, Irvine)
Stephen McAleer (UC Irvine)
Dailin Hu (UC Irvine)
Alexander Ihler (UC Irvine)
Pieter Abbeel (UC Berkeley & Covariant)
Pieter Abbeel is Professor and Director of the Robot Learning Lab at UC Berkeley [2008- ], Co-Director of the Berkeley AI Research (BAIR) Lab, Co-Founder of covariant.ai [2017- ], Co-Founder of Gradescope [2014- ], Advisor to OpenAI, Founding Faculty Partner AI@TheHouse venture fund, Advisor to many AI/Robotics start-ups. He works in machine learning and robotics. In particular his research focuses on making robots learn from people (apprenticeship learning), how to make robots learn through their own trial and error (reinforcement learning), and how to speed up skill acquisition through learning-to-learn (meta-learning). His robots have learned advanced helicopter aerobatics, knot-tying, basic assembly, organizing laundry, locomotion, and vision-based robotic manipulation. He has won numerous awards, including best paper awards at ICML, NIPS and ICRA, early career awards from NSF, Darpa, ONR, AFOSR, Sloan, TR35, IEEE, and the Presidential Early Career Award for Scientists and Engineers (PECASE). Pieter's work is frequently featured in the popular press, including New York Times, BBC, Bloomberg, Wall Street Journal, Wired, Forbes, Tech Review, NPR.
Roy Fox (UC Irvine)
[Roy Fox](http://roydfox.com/) is a postdoc at UC Berkeley working with [Ion Stoica](http://people.eecs.berkeley.edu/~istoica/) in the Real-Time Intelligent Secure Explainable lab ([RISELab](https://rise.cs.berkeley.edu/)), and with [Ken Goldberg](http://goldberg.berkeley.edu/) in the Laboratory for Automation Science and Engineering ([AUTOLAB](http://autolab.berkeley.edu/)). His research interests include reinforcement learning, dynamical systems, information theory, automation, and the connections between these fields. His current research focuses on automatic discovery of hierarchical control structures in deep reinforcement learning and in imitation learning of robotic tasks. Roy holds a MSc in Computer Science from the [Technion](http://www.cs.technion.ac.il/), under the supervision of [Moshe Tennenholtz](http://iew3.technion.ac.il/Home/Users/Moshet.phtml), and a PhD in Computer Science from the [Hebrew University](http://www.cs.huji.ac.il/), under the supervision of [Naftali Tishby](http://www.cs.huji.ac.il/~tishby/). He was an exchange PhD student with [Larry Abbott](http://www.cs.huji.ac.il/~tishby/) and [Liam Paninski](http://www.stat.columbia.edu/~liam/) at the [Center for Theoretical Neuroscience](http://www.neurotheory.columbia.edu/) at Columbia University, and a research intern at Microsoft Research.
More from the Same Authors
-
2021 : B-Pref: Benchmarking Preference-Based Reinforcement Learning »
Kimin Lee · Laura Smith · Anca Dragan · Pieter Abbeel -
2021 Spotlight: Behavior From the Void: Unsupervised Active Pre-Training »
Hao Liu · Pieter Abbeel -
2021 : An Empirical Investigation of Representation Learning for Imitation »
Cynthia Chen · Sam Toyer · Cody Wild · Scott Emmons · Ian Fischer · Kuang-Huei Lee · Neel Alex · Steven Wang · Ping Luo · Stuart Russell · Pieter Abbeel · Rohin Shah -
2021 : URLB: Unsupervised Reinforcement Learning Benchmark »
Misha Laskin · Denis Yarats · Hao Liu · Kimin Lee · Albert Zhan · Kevin Lu · Catherine Cang · Lerrel Pinto · Pieter Abbeel -
2021 : Target Entropy Annealing for Discrete Soft Actor-Critic »
Yaosheng Xu · Dailin Hu · Litian Liang · Stephen McAleer · Pieter Abbeel · Roy Fox -
2021 : Count-Based Temperature Scheduling for Maximum Entropy Reinforcement Learning »
Dailin Hu · Pieter Abbeel · Roy Fox -
2021 : Reward Uncertainty for Exploration in Preference-based Reinforcement Learning »
Xinran Liang · Katherine Shu · Kimin Lee · Pieter Abbeel -
2021 : CIC: Contrastive Intrinsic Control for Unsupervised Skill Discovery »
Misha Laskin · Hao Liu · Xue Bin Peng · Denis Yarats · Aravind Rajeswaran · Pieter Abbeel -
2021 : SURF: Semi-supervised Reward Learning with Data Augmentation for Feedback-efficient Preference-based Reinforcement Learning »
Jongjin Park · Younggyo Seo · Jinwoo Shin · Honglak Lee · Pieter Abbeel · Kimin Lee -
2021 : A Framework for Efficient Robotic Manipulation »
Albert Zhan · Ruihan Zhao · Lerrel Pinto · Pieter Abbeel · Misha Laskin -
2021 : URLB: Unsupervised Reinforcement Learning Benchmark »
Misha Laskin · Denis Yarats · Hao Liu · Kimin Lee · Albert Zhan · Kevin Lu · Catherine Cang · Lerrel Pinto · Pieter Abbeel -
2021 : Skill Preferences: Learning to Extract and Execute Robotic Skills from Human Feedback »
Xiaofei Wang · Kimin Lee · Kourosh Hakhamaneshi · Pieter Abbeel · Misha Laskin -
2021 : Behavioral Priors and Dynamics Models: Improving Performance and Domain Transfer in Offline RL »
Catherine Cang · Aravind Rajeswaran · Pieter Abbeel · Misha Laskin -
2021 : Hierarchical Few-Shot Imitation with Skill Transition Models »
Kourosh Hakhamaneshi · Ruihan Zhao · Albert Zhan · Pieter Abbeel · Misha Laskin -
2021 : Deep learning reconstruction of the neutrino energy with a shallow Askaryan detector »
Stephen McAleer · Christian Glaser · Pierre Baldi -
2021 : Pretraining for Language-Conditioned Imitation with Transformers »
Aaron Putterman · Kevin Lu · Igor Mordatch · Pieter Abbeel -
2022 Poster: Towards Human-Level Bimanual Dexterous Manipulation with Reinforcement Learning »
Yuanpei Chen · Tianhao Wu · Shengjie Wang · Xidong Feng · Jiechuan Jiang · Zongqing Lu · Stephen McAleer · Hao Dong · Song-Chun Zhu · Yaodong Yang -
2022 : Quantifying Uncertainty in Foundation Models via Ensembles »
Meiqi Sun · Wilson Yan · Pieter Abbeel · Igor Mordatch -
2022 : Multi-Environment Pretraining Enables Transfer to Action Limited Datasets »
David Venuto · Mengjiao (Sherry) Yang · Pieter Abbeel · Doina Precup · Igor Mordatch · Ofir Nachum -
2022 : Train Offline, Test Online: A Real Robot Learning Benchmark »
Gaoyue Zhou · Victoria Dean · Mohan Kumar Srirama · Aravind Rajeswaran · Jyothish Pari · Kyle Hatch · Aryan Jain · Tianhe Yu · Pieter Abbeel · Lerrel Pinto · Chelsea Finn · Abhinav Gupta -
2022 : Train Offline, Test Online: A Real Robot Learning Benchmark »
Gaoyue Zhou · Victoria Dean · Mohan Kumar Srirama · Aravind Rajeswaran · Jyothish Pari · Kyle Hatch · Aryan Jain · Tianhe Yu · Pieter Abbeel · Lerrel Pinto · Chelsea Finn · Abhinav Gupta -
2022 : CLUTR: Curriculum Learning via Unsupervised Task Representation Learning »
Abdus Salam Azad · Izzeddin Gur · Aleksandra Faust · Pieter Abbeel · Ion Stoica -
2022 : Train Offline, Test Online: A Real Robot Learning Benchmark »
Gaoyue Zhou · Victoria Dean · Mohan Kumar Srirama · Aravind Rajeswaran · Jyothish Pari · Kyle Hatch · Aryan Jain · Tianhe Yu · Pieter Abbeel · Lerrel Pinto · Chelsea Finn · Abhinav Gupta -
2022 : Feasible Adversarial Robust Reinforcement Learning for Underspecified Environments »
JB Lanier · Stephen McAleer · Pierre Baldi · Roy Fox -
2022 : ESCHER: ESCHEWING IMPORTANCE SAMPLING IN GAMES BY COMPUTING A HISTORY VALUE FUNCTION TO ESTIMATE REGRET »
Stephen McAleer · Gabriele Farina · Marc Lanctot · Tuomas Sandholm -
2022 Spotlight: Towards Human-Level Bimanual Dexterous Manipulation with Reinforcement Learning »
Yuanpei Chen · Tianhao Wu · Shengjie Wang · Xidong Feng · Jiechuan Jiang · Zongqing Lu · Stephen McAleer · Hao Dong · Song-Chun Zhu · Yaodong Yang -
2022 : Train Offline, Test Online: A Real Robot Learning Benchmark »
Gaoyue Zhou · Victoria Dean · Mohan Kumar Srirama · Aravind Rajeswaran · Jyothish Pari · Kyle Hatch · Aryan Jain · Tianhe Yu · Pieter Abbeel · Lerrel Pinto · Chelsea Finn · Abhinav Gupta -
2022 : Train Offline, Test Online: A Real Robot Learning Benchmark »
Gaoyue Zhou · Victoria Dean · Mohan Kumar Srirama · Aravind Rajeswaran · Jyothish Pari · Kyle Hatch · Aryan Jain · Tianhe Yu · Pieter Abbeel · Lerrel Pinto · Chelsea Finn · Abhinav Gupta -
2022 Poster: On the Effectiveness of Fine-tuning Versus Meta-reinforcement Learning »
Mandi Zhao · Pieter Abbeel · Stephen James -
2022 Poster: Chain of Thought Imitation with Procedure Cloning »
Mengjiao (Sherry) Yang · Dale Schuurmans · Pieter Abbeel · Ofir Nachum -
2022 Poster: Masked Autoencoding for Scalable and Generalizable Decision Making »
Fangchen Liu · Hao Liu · Aditya Grover · Pieter Abbeel -
2022 Poster: Unsupervised Reinforcement Learning with Contrastive Intrinsic Control »
Michael Laskin · Hao Liu · Xue Bin Peng · Denis Yarats · Aravind Rajeswaran · Pieter Abbeel -
2022 Poster: Spending Thinking Time Wisely: Accelerating MCTS with Virtual Expansions »
Weirui Ye · Pieter Abbeel · Yang Gao -
2022 Poster: Deep Hierarchical Planning from Pixels »
Danijar Hafner · Kuang-Huei Lee · Ian Fischer · Pieter Abbeel -
2021 : Playful Interactions for Representation Learning »
Sarah Young · Pieter Abbeel · Lerrel Pinto -
2021 Workshop: Deep Reinforcement Learning »
Pieter Abbeel · Chelsea Finn · David Silver · Matthew Taylor · Martha White · Srijita Das · Yuqing Du · Andrew Patterson · Manan Tomar · Olivia Watkins -
2021 Poster: Hindsight Task Relabelling: Experience Replay for Sparse Reward Meta-RL »
Charles Packer · Pieter Abbeel · Joseph Gonzalez -
2021 Poster: Improving Computational Efficiency in Visual Reinforcement Learning via Stored Embeddings »
Lili Chen · Kimin Lee · Aravind Srinivas · Pieter Abbeel -
2021 : BASALT: A MineRL Competition on Solving Human-Judged Task + Q&A »
Rohin Shah · Cody Wild · Steven Wang · Neel Alex · Brandon Houghton · William Guss · Sharada Mohanty · Stephanie Milani · Nicholay Topin · Pieter Abbeel · Stuart Russell · Anca Dragan -
2021 Poster: Decision Transformer: Reinforcement Learning via Sequence Modeling »
Lili Chen · Kevin Lu · Aravind Rajeswaran · Kimin Lee · Aditya Grover · Misha Laskin · Pieter Abbeel · Aravind Srinivas · Igor Mordatch -
2021 Poster: Mastering Atari Games with Limited Data »
Weirui Ye · Shaohuai Liu · Thanard Kurutach · Pieter Abbeel · Yang Gao -
2021 Poster: XDO: A Double Oracle Algorithm for Extensive-Form Games »
Stephen McAleer · JB Lanier · Kevin A Wang · Pierre Baldi · Roy Fox -
2021 Poster: Reinforcement Learning with Latent Flow »
Wenling Shang · Xiaofei Wang · Aravind Srinivas · Aravind Rajeswaran · Yang Gao · Pieter Abbeel · Misha Laskin -
2021 Poster: Behavior From the Void: Unsupervised Active Pre-Training »
Hao Liu · Pieter Abbeel -
2021 Poster: Teachable Reinforcement Learning via Advice Distillation »
Olivia Watkins · Abhishek Gupta · Trevor Darrell · Pieter Abbeel · Jacob Andreas -
2020 : Panel discussion »
Pierre-Yves Oudeyer · Marc Bellemare · Peter Stone · Matt Botvinick · Susan Murphy · Anusha Nagabandi · Ashley Edwards · Karen Liu · Pieter Abbeel -
2020 : Contributed Talk: Reset-Free Lifelong Learning with Skill-Space Planning »
Kevin Lu · Aditya Grover · Pieter Abbeel · Igor Mordatch -
2020 Workshop: Deep Reinforcement Learning »
Pieter Abbeel · Chelsea Finn · Joelle Pineau · David Silver · Satinder Singh · Coline Devin · Misha Laskin · Kimin Lee · Janarthanan Rajendran · Vivek Veeriah -
2020 Poster: Denoising Diffusion Probabilistic Models »
Jonathan Ho · Ajay Jain · Pieter Abbeel -
2020 Poster: Automatic Curriculum Learning through Value Disagreement »
Yunzhi Zhang · Pieter Abbeel · Lerrel Pinto -
2020 Poster: AvE: Assistance via Empowerment »
Yuqing Du · Stas Tiomkin · Emre Kiciman · Daniel Polani · Pieter Abbeel · Anca Dragan -
2020 Poster: Reinforcement Learning with Augmented Data »
Misha Laskin · Kimin Lee · Adam Stooke · Lerrel Pinto · Pieter Abbeel · Aravind Srinivas -
2020 Poster: Generalized Hindsight for Reinforcement Learning »
Alexander Li · Lerrel Pinto · Pieter Abbeel -
2020 Poster: Trajectory-wise Multiple Choice Learning for Dynamics Generalization in Reinforcement Learning »
Younggyo Seo · Kimin Lee · Ignasi Clavera Gilaberte · Thanard Kurutach · Jinwoo Shin · Pieter Abbeel -
2020 Spotlight: Reinforcement Learning with Augmented Data »
Misha Laskin · Kimin Lee · Adam Stooke · Lerrel Pinto · Pieter Abbeel · Aravind Srinivas -
2020 Poster: Sparse Graphical Memory for Robust Planning »
Scott Emmons · Ajay Jain · Misha Laskin · Thanard Kurutach · Pieter Abbeel · Deepak Pathak -
2020 Poster: Stochastic Latent Actor-Critic: Deep Reinforcement Learning with a Latent Variable Model »
Alex X. Lee · Anusha Nagabandi · Pieter Abbeel · Sergey Levine -
2020 Poster: Pipeline PSRO: A Scalable Approach for Finding Approximate Nash Equilibria in Large Games »
Stephen McAleer · JB Lanier · Roy Fox · Pierre Baldi -
2019 : Poster and Coffee Break 2 »
Karol Hausman · Kefan Dong · Ken Goldberg · Lihong Li · Lin Yang · Lingxiao Wang · Lior Shani · Liwei Wang · Loren Amdahl-Culleton · Lucas Cassano · Marc Dymetman · Marc Bellemare · Marcin Tomczak · Margarita Castro · Marius Kloft · Marius-Constantin Dinu · Markus Holzleitner · Martha White · Mengdi Wang · Michael Jordan · Mihailo Jovanovic · Ming Yu · Minshuo Chen · Moonkyung Ryu · Muhammad Zaheer · Naman Agarwal · Nan Jiang · Niao He · Nikolaus Yasui · Nikos Karampatziakis · Nino Vieillard · Ofir Nachum · Olivier Pietquin · Ozan Sener · Pan Xu · Parameswaran Kamalaruban · Paul Mineiro · Paul Rolland · Philip Amortila · Pierre-Luc Bacon · Prakash Panangaden · Qi Cai · Qiang Liu · Quanquan Gu · Raihan Seraj · Richard Sutton · Rick Valenzano · Robert Dadashi · Rodrigo Toro Icarte · Roshan Shariff · Roy Fox · Ruosong Wang · Saeed Ghadimi · Samuel Sokota · Sean Sinclair · Sepp Hochreiter · Sergey Levine · Sergio Valcarcel Macua · Sham Kakade · Shangtong Zhang · Sheila McIlraith · Shie Mannor · Shimon Whiteson · Shuai Li · Shuang Qiu · Wai Lok Li · Siddhartha Banerjee · Sitao Luan · Tamer Basar · Thinh Doan · Tianhe Yu · Tianyi Liu · Tom Zahavy · Toryn Klassen · Tuo Zhao · Vicenç Gómez · Vincent Liu · Volkan Cevher · Wesley Suttle · Xiao-Wen Chang · Xiaohan Wei · Xiaotong Liu · Xingguo Li · Xinyi Chen · Xingyou Song · Yao Liu · YiDing Jiang · Yihao Feng · Yilun Du · Yinlam Chow · Yinyu Ye · Yishay Mansour · · Yonathan Efroni · Yongxin Chen · Yuanhao Wang · Bo Dai · Chen-Yu Wei · Harsh Shrivastava · Hongyang Zhang · Qinqing Zheng · SIDDHARTHA SATPATHI · Xueqing Liu · Andreu Vall -
2019 : Poster Presentations »
Rahul Mehta · Andrew Lampinen · Binghong Chen · Sergio Pascual-Diaz · Jordi Grau-Moya · Aldo Faisal · Jonathan Tompson · Yiren Lu · Khimya Khetarpal · Martin Klissarov · Pierre-Luc Bacon · Doina Precup · Thanard Kurutach · Aviv Tamar · Pieter Abbeel · Jinke He · Maximilian Igl · Shimon Whiteson · Wendelin Boehmer · Raphaël Marinier · Olivier Pietquin · Karol Hausman · Sergey Levine · Chelsea Finn · Tianhe Yu · Lisa Lee · Benjamin Eysenbach · Emilio Parisotto · Eric Xing · Ruslan Salakhutdinov · Hongyu Ren · Anima Anandkumar · Deepak Pathak · Christopher Lu · Trevor Darrell · Alexei Efros · Phillip Isola · Feng Liu · Bo Han · Gang Niu · Masashi Sugiyama · Saurabh Kumar · Janith Petangoda · Johan Ferret · James McClelland · Kara Liu · Animesh Garg · Robert Lange -
2019 Workshop: Deep Reinforcement Learning »
Pieter Abbeel · Chelsea Finn · Joelle Pineau · David Silver · Satinder Singh · Joshua Achiam · Carlos Florensa · Christopher Grimm · Haoran Tang · Vivek Veeriah -
2019 : Pieter Abbeel »
Pieter Abbeel -
2019 Poster: Evaluating Protein Transfer Learning with TAPE »
Roshan Rao · Nicholas Bhattacharya · Neil Thomas · Yan Duan · Peter Chen · John Canny · Pieter Abbeel · Yun Song -
2019 Spotlight: Evaluating Protein Transfer Learning with TAPE »
Roshan Rao · Nicholas Bhattacharya · Neil Thomas · Yan Duan · Peter Chen · John Canny · Pieter Abbeel · Yun Song -
2019 Poster: Goal-conditioned Imitation Learning »
Yiming Ding · Carlos Florensa · Pieter Abbeel · Mariano Phielipp -
2019 Poster: Geometry-Aware Neural Rendering »
Joshua Tobin · Wojciech Zaremba · Pieter Abbeel -
2019 Poster: MCP: Learning Composable Hierarchical Control with Multiplicative Compositional Policies »
Xue Bin Peng · Michael Chang · Grace Zhang · Pieter Abbeel · Sergey Levine -
2019 Oral: Geometry-Aware Neural Rendering »
Joshua Tobin · Wojciech Zaremba · Pieter Abbeel -
2019 Poster: Compositional Plan Vectors »
Coline Devin · Daniel Geng · Pieter Abbeel · Trevor Darrell · Sergey Levine -
2019 Poster: On the Utility of Learning about Humans for Human-AI Coordination »
Micah Carroll · Rohin Shah · Mark Ho · Tom Griffiths · Sanjit Seshia · Pieter Abbeel · Anca Dragan -
2019 Poster: Compression with Flows via Local Bits-Back Coding »
Jonathan Ho · Evan Lohn · Pieter Abbeel -
2019 Poster: Guided Meta-Policy Search »
Russell Mendonca · Abhishek Gupta · Rosen Kralev · Pieter Abbeel · Sergey Levine · Chelsea Finn -
2019 Spotlight: Compression with Flows via Local Bits-Back Coding »
Jonathan Ho · Evan Lohn · Pieter Abbeel -
2019 Spotlight: Guided Meta-Policy Search »
Russell Mendonca · Abhishek Gupta · Rosen Kralev · Pieter Abbeel · Sergey Levine · Chelsea Finn -
2018 : Discussion Panel: Ryan Adams, Nicolas Heess, Leslie Kaelbling, Shie Mannor, Emo Todorov (moderator: Roy Fox) »
Ryan Adams · Nicolas Heess · Leslie Kaelbling · Shie Mannor · Emo Todorov · Roy Fox -
2018 : Spotlights 2 »
Aditya Gopalan · Sungjoon Choi · Thomas Ringstrom · Roy Fox · Jonas Degrave · Xiya Cao · Karl Pertsch · Maximilian Igl · Brian Ichter -
2018 : Pieter Abbeel »
Pieter Abbeel -
2018 : Opening Remarks »
Roy Fox -
2018 Workshop: Infer to Control: Probabilistic Reinforcement Learning and Structured Control »
Leslie Kaelbling · Martin Riedmiller · Marc Toussaint · Igor Mordatch · Roy Fox · Tuomas Haarnoja -
2018 Workshop: Deep Reinforcement Learning »
Pieter Abbeel · David Silver · Satinder Singh · Joelle Pineau · Joshua Achiam · Rein Houthooft · Aravind Srinivas -
2018 Poster: Lifted Weighted Mini-Bucket »
Nicholas Gallo · Alexander Ihler -
2018 Poster: Meta-Reinforcement Learning of Structured Exploration Strategies »
Abhishek Gupta · Russell Mendonca · YuXuan Liu · Pieter Abbeel · Sergey Levine -
2018 Poster: Learning Plannable Representations with Causal InfoGAN »
Thanard Kurutach · Aviv Tamar · Ge Yang · Stuart Russell · Pieter Abbeel -
2018 Spotlight: Meta-Reinforcement Learning of Structured Exploration Strategies »
Abhishek Gupta · Russell Mendonca · YuXuan Liu · Pieter Abbeel · Sergey Levine -
2018 Poster: Evolved Policy Gradients »
Rein Houthooft · Yuhua Chen · Phillip Isola · Bradly Stadie · Filip Wolski · OpenAI Jonathan Ho · Pieter Abbeel -
2018 Spotlight: Evolved Policy Gradients »
Rein Houthooft · Yuhua Chen · Phillip Isola · Bradly Stadie · Filip Wolski · OpenAI Jonathan Ho · Pieter Abbeel -
2018 Poster: The Importance of Sampling inMeta-Reinforcement Learning »
Bradly Stadie · Ge Yang · Rein Houthooft · Peter Chen · Yan Duan · Yuhuai Wu · Pieter Abbeel · Ilya Sutskever -
2017 : Panel Discussion »
Matt Botvinick · Emma Brunskill · Marcos Campos · Jan Peters · Doina Precup · David Silver · Josh Tenenbaum · Roy Fox -
2017 : Meta-Learning Shared Hierarchies (Pieter Abbeel) »
Pieter Abbeel -
2017 : Exhausting the Sim with Domain Randomization and Trying to Exhaust the Real World, Pieter Abbeel, UC Berkeley and Embodied Intelligence »
Pieter Abbeel · Gregory Kahn -
2017 : Opening Remarks »
Roy Fox -
2017 Workshop: Hierarchical Reinforcement Learning »
Andrew G Barto · Doina Precup · Shie Mannor · Tom Schaul · Roy Fox · Carlos Florensa -
2017 Workshop: NIPS Highlights (MLTrain), Learn How to code a paper with state of the art frameworks »
Alex Dimakis · Nikolaos Vasiloglou · Guy Van den Broeck · Alexander Ihler · Assaf Araki -
2017 Symposium: Deep Reinforcement Learning »
Pieter Abbeel · Yan Duan · David Silver · Satinder Singh · Junhyuk Oh · Rein Houthooft -
2017 Poster: #Exploration: A Study of Count-Based Exploration for Deep Reinforcement Learning »
Haoran Tang · Rein Houthooft · Davis Foote · Adam Stooke · OpenAI Xi Chen · Yan Duan · John Schulman · Filip DeTurck · Pieter Abbeel -
2017 Poster: Inverse Reward Design »
Dylan Hadfield-Menell · Smitha Milli · Pieter Abbeel · Stuart J Russell · Anca Dragan -
2017 Oral: Inverse Reward Design »
Dylan Hadfield-Menell · Smitha Milli · Pieter Abbeel · Stuart J Russell · Anca Dragan -
2017 Invited Talk: Deep Learning for Robotics »
Pieter Abbeel -
2017 Demonstration: Deep Robotic Learning using Visual Imagination and Meta-Learning »
Chelsea Finn · Frederik Ebert · Tianhe Yu · Annie Xie · Sudeep Dasari · Pieter Abbeel · Sergey Levine -
2017 Poster: One-Shot Imitation Learning »
Yan Duan · Marcin Andrychowicz · Bradly Stadie · OpenAI Jonathan Ho · Jonas Schneider · Ilya Sutskever · Pieter Abbeel · Wojciech Zaremba -
2017 Poster: Dynamic Importance Sampling for Anytime Bounds of the Partition Function »
Qi Lou · Rina Dechter · Alexander Ihler -
2016 : Pieter Abbeel (University of California, Berkeley) »
Pieter Abbeel -
2016 : Invited Talk: Safe Reinforcement Learning for Robotics (Pieter Abbeel, UC Berkeley and OpenAI) »
Pieter Abbeel -
2016 Workshop: Deep Reinforcement Learning »
David Silver · Satinder Singh · Pieter Abbeel · Peter Chen -
2016 Poster: Backprop KF: Learning Discriminative Deterministic State Estimators »
Tuomas Haarnoja · Anurag Ajay · Sergey Levine · Pieter Abbeel -
2016 Poster: Learning to Poke by Poking: Experiential Learning of Intuitive Physics »
Pulkit Agrawal · Ashvin Nair · Pieter Abbeel · Jitendra Malik · Sergey Levine -
2016 Oral: Learning to Poke by Poking: Experiential Learning of Intuitive Physics »
Pulkit Agrawal · Ashvin Nair · Pieter Abbeel · Jitendra Malik · Sergey Levine -
2016 Poster: Combinatorial Energy Learning for Image Segmentation »
Jeremy Maitin-Shepard · Viren Jain · Michal Januszewski · Peter Li · Pieter Abbeel -
2016 Poster: InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets »
Xi Chen · Peter Chen · Yan Duan · Rein Houthooft · John Schulman · Ilya Sutskever · Pieter Abbeel -
2016 Poster: VIME: Variational Information Maximizing Exploration »
Rein Houthooft · Xi Chen · Peter Chen · Yan Duan · John Schulman · Filip De Turck · Pieter Abbeel -
2016 Poster: Value Iteration Networks »
Aviv Tamar · Sergey Levine · Pieter Abbeel · YI WU · Garrett Thomas -
2016 Oral: Value Iteration Networks »
Aviv Tamar · Sergey Levine · Pieter Abbeel · YI WU · Garrett Thomas -
2016 Poster: Learning Infinite RBMs with Frank-Wolfe »
Wei Ping · Qiang Liu · Alexander Ihler -
2016 Poster: Cooperative Inverse Reinforcement Learning »
Dylan Hadfield-Menell · Stuart J Russell · Pieter Abbeel · Anca Dragan -
2016 Tutorial: Deep Reinforcement Learning Through Policy Optimization »
Pieter Abbeel · John Schulman -
2015 Workshop: Deep Reinforcement Learning »
Pieter Abbeel · John Schulman · Satinder Singh · David Silver -
2015 Poster: Gradient Estimation Using Stochastic Computation Graphs »
John Schulman · Nicolas Heess · Theophane Weber · Pieter Abbeel -
2015 Poster: Probabilistic Variational Bounds for Graphical Models »
Qiang Liu · John Fisher III · Alexander Ihler -
2015 Poster: Decomposition Bounds for Marginal MAP »
Wei Ping · Qiang Liu · Alexander Ihler -
2014 Workshop: Novel Trends and Applications in Reinforcement Learning »
Csaba Szepesvari · Marc Deisenroth · Sergey Levine · Pedro Ortega · Brian Ziebart · Emma Brunskill · Naftali Tishby · Gerhard Neumann · Daniel Lee · Sridhar Mahadevan · Pieter Abbeel · David Silver · Vicenç Gómez -
2014 Poster: Learning Neural Network Policies with Guided Policy Search under Unknown Dynamics »
Sergey Levine · Pieter Abbeel -
2014 Spotlight: Learning Neural Network Policies with Guided Policy Search under Unknown Dynamics »
Sergey Levine · Pieter Abbeel -
2014 Poster: Distributed Estimation, Information Loss and Exponential Families »
Qiang Liu · Alexander Ihler -
2013 Workshop: Crowdsourcing: Theory, Algorithms and Applications »
Jennifer Wortman Vaughan · Greg Stoddard · Chien-Ju Ho · Adish Singla · Michael Bernstein · Devavrat Shah · Arpita Ghosh · Evgeniy Gabrilovich · Denny Zhou · Nikhil Devanur · Xi Chen · Alexander Ihler · Qiang Liu · Genevieve Patterson · Ashwinkumar Badanidiyuru Varadaraja · Hossein Azari Soufiani · Jacob Whitehill -
2013 Poster: Scoring Workers in Crowdsourcing: How Many Control Questions are Enough? »
Qiang Liu · Alexander Ihler · Mark Steyvers -
2013 Spotlight: Scoring Workers in Crowdsourcing: How Many Control Questions are Enough? »
Qiang Liu · Alexander Ihler · Mark Steyvers -
2013 Poster: Variational Planning for Graph-based MDPs »
Qiang Cheng · Qiang Liu · Feng Chen · Alexander Ihler -
2012 Poster: Variational Inference for Crowdsourcing »
Qiang Liu · Jian Peng · Alexander Ihler -
2012 Poster: Near Optimal Chernoff Bounds for Markov Decision Processes »
Teodor Mihai Moldovan · Pieter Abbeel -
2012 Spotlight: Near Optimal Chernoff Bounds for Markov Decision Processes »
Teodor Mihai Moldovan · Pieter Abbeel -
2010 Spotlight: On a Connection between Importance Sampling and the Likelihood Ratio Policy Gradient »
Jie Tang · Pieter Abbeel -
2010 Poster: On a Connection between Importance Sampling and the Likelihood Ratio Policy Gradient »
Jie Tang · Pieter Abbeel -
2009 Poster: Particle-based Variational Inference for Continuous Systems »
Alexander Ihler · Andrew Frank · Padhraic Smyth -
2007 Spotlight: Hierarchical Apprenticeship Learning with Application to Quadruped Locomotion »
J. Zico Kolter · Pieter Abbeel · Andrew Y Ng -
2007 Poster: Hierarchical Apprenticeship Learning with Application to Quadruped Locomotion »
J. Zico Kolter · Pieter Abbeel · Andrew Y Ng -
2006 Poster: Max-margin classification of incomplete data »
Gal Chechik · Geremy Heitz · Gal Elidan · Pieter Abbeel · Daphne Koller -
2006 Spotlight: Max-margin classification of incomplete data »
Gal Chechik · Geremy Heitz · Gal Elidan · Pieter Abbeel · Daphne Koller -
2006 Poster: Learning Time-Intensity Profiles of Human Activity using Non-Parametric Bayesian Models »
Alexander Ihler · Padhraic Smyth -
2006 Poster: An Application of Reinforcement Learning to Aerobatic Helicopter Flight »
Pieter Abbeel · Adam P Coates · Andrew Y Ng · Morgan Quigley -
2006 Talk: An Application of Reinforcement Learning to Aerobatic Helicopter Flight »
Pieter Abbeel · Adam P Coates · Andrew Y Ng · Morgan Quigley