Timezone: »
Self-supervised learning (SSL) learns general visual representations without the need of labels. However, large-scale unlabeled datasets in the wild often have long-tailed label distributions, where we know little about the behavior of SSL. We investigate SSL under dataset imbalance, and find out that existing self-supervised representations are more robust to class imbalance than supervised representations.The performance gap between balanced and imbalanced pre-training with SSL is much smaller than the gap with supervised learning.Second, to understand the robustness of SSL, we hypothesize that SSL learns richer features from frequent data: it may learn label-irrelevant-but-transferable features that help classify the rare classes. In contrast, supervised learning has no incentive to learn features irrelevant to the labels of frequent examples. We validate the hypothesis with semi-synthetic experiments and theoretical analysis on a simplified setting.
Author Information
Hong Liu (Stanford University)
Jeff Z. HaoChen (Stanford University)
Adrien Gaidon (Toyota Research Institute)
Tengyu Ma (Stanford University)
More from the Same Authors
-
2021 Spotlight: Why Do Pretrained Language Models Help in Downstream Tasks? An Analysis of Head and Prompt Tuning »
Colin Wei · Sang Michael Xie · Tengyu Ma -
2021 : Calibrated Ensembles: A Simple Way to Mitigate ID-OOD Accuracy Tradeoffs »
Ananya Kumar · Aditi Raghunathan · Tengyu Ma · Percy Liang -
2021 : Plan Better Amid Conservatism: Offline Multi-Agent Reinforcement Learning with Actor Rectification »
Ling Pan · Longbo Huang · Tengyu Ma · Huazhe Xu -
2021 : DR3: Value-Based Deep Reinforcement Learning Requires Explicit Regularization »
Aviral Kumar · Rishabh Agarwal · Tengyu Ma · Aaron Courville · George Tucker · Sergey Levine -
2022 : DrML: Diagnosing and Rectifying Vision Models using Language »
Yuhui Zhang · Jeff Z. HaoChen · Shih-Cheng Huang · Kuan-Chieh Wang · James Zou · Serena Yeung -
2022 : DrML: Diagnosing and Rectifying Vision Models using Language »
Yuhui Zhang · Jeff Z. HaoChen · Shih-Cheng Huang · Kuan-Chieh Wang · James Zou · Serena Yeung -
2022 : Can Active Sampling Reduce Causal Confusion in Offline Reinforcement Learning? »
Gunshi Gupta · Tim G. J. Rudner · Rowan McAllister · Adrien Gaidon · Yarin Gal -
2022 Poster: Amortized Proximal Optimization »
Juhan Bae · Paul Vicol · Jeff Z. HaoChen · Roger Grosse -
2022 Poster: Beyond Separability: Analyzing the Linear Transferability of Contrastive Representations to Related Subpopulations »
Jeff Z. HaoChen · Colin Wei · Ananya Kumar · Tengyu Ma -
2021 : DR3: Value-Based Deep Reinforcement Learning Requires Explicit Regularization Q&A »
Aviral Kumar · Rishabh Agarwal · Tengyu Ma · Aaron Courville · George Tucker · Sergey Levine -
2021 : DR3: Value-Based Deep Reinforcement Learning Requires Explicit Regularization »
Aviral Kumar · Rishabh Agarwal · Tengyu Ma · Aaron Courville · George Tucker · Sergey Levine -
2021 Poster: Label Noise SGD Provably Prefers Flat Global Minimizers »
Alex Damian · Tengyu Ma · Jason Lee -
2021 Poster: Learning Barrier Certificates: Towards Safe Reinforcement Learning with Zero Training-time Violations »
Yuping Luo · Tengyu Ma -
2021 Poster: Cycle Self-Training for Domain Adaptation »
Hong Liu · Jianmin Wang · Mingsheng Long -
2021 Poster: Calibrating Predictions to Decisions: A Novel Approach to Multi-Class Calibration »
Shengjia Zhao · Michael Kim · Roshni Sahoo · Tengyu Ma · Stefano Ermon -
2021 Poster: Why Do Pretrained Language Models Help in Downstream Tasks? An Analysis of Head and Prompt Tuning »
Colin Wei · Sang Michael Xie · Tengyu Ma -
2021 Oral: Provable Guarantees for Self-Supervised Deep Learning with Spectral Contrastive Loss »
Jeff Z. HaoChen · Colin Wei · Adrien Gaidon · Tengyu Ma -
2021 Poster: Safe Reinforcement Learning by Imagining the Near Future »
Garrett Thomas · Yuping Luo · Tengyu Ma -
2021 Poster: Provable Guarantees for Self-Supervised Deep Learning with Spectral Contrastive Loss »
Jeff Z. HaoChen · Colin Wei · Adrien Gaidon · Tengyu Ma -
2021 Poster: Provable Model-based Nonlinear Bandit and Reinforcement Learning: Shelve Optimism, Embrace Virtual Curvature »
Kefan Dong · Jiaqi Yang · Tengyu Ma -
2020 Poster: Learning to Adapt to Evolving Domains »
Hong Liu · Mingsheng Long · Jianmin Wang · Yu Wang -
2019 : Tengyu Ma, "Designing Explicit Regularizers for Deep Models" »
Tengyu Ma -
2019 Poster: Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss »
Kaidi Cao · Colin Wei · Adrien Gaidon · Nikos Arechiga · Tengyu Ma -
2018 : Poster Session »
Sujay Sanghavi · Vatsal Shah · Yanyao Shen · Tianchen Zhao · Yuandong Tian · Tomer Galanti · Mufan Li · Gilad Cohen · Daniel Rothchild · Aristide Baratin · Devansh Arpit · Vagelis Papalexakis · Michael Perlmutter · Ashok Vardhan Makkuva · Pim de Haan · Yingyan Lin · Wanmo Kang · Cheolhyoung Lee · Hao Shen · Sho Yaida · Dan Roberts · Nadav Cohen · Philippe Casgrain · Dejiao Zhang · Tengyu Ma · Avinash Ravichandran · Julian Emilio Salazar · Bo Li · Davis Liang · Christopher Wong · Glen Bigan Mbeng · Animesh Garg -
2017 : Panel Discussion »
Gregory Kahn · Ramesh Sarukkai · Adrien Gaidon · Sertac Karaman -
2017 : Deep Learning and photo-realistic Simulation for real-world Machine Intelligence in Autonomous Driving, Adrien Gaidon (TRI) »
Adrien Gaidon -
2017 Poster: On the Optimization Landscape of Tensor Decompositions »
Rong Ge · Tengyu Ma -
2017 Oral: On the Optimization Landscape of Tensor Decompositions »
Rong Ge · Tengyu Ma -
2016 Oral: Matrix Completion has No Spurious Local Minimum »
Rong Ge · Jason Lee · Tengyu Ma -
2016 Poster: Matrix Completion has No Spurious Local Minimum »
Rong Ge · Jason Lee · Tengyu Ma -
2016 Poster: A Non-generative Framework and Convex Relaxations for Unsupervised Learning »
Elad Hazan · Tengyu Ma -
2015 Poster: Sum-of-Squares Lower Bounds for Sparse PCA »
Tengyu Ma · Avi Wigderson -
2014 Poster: On Communication Cost of Distributed Statistical Estimation and Dimensionality »
Ankit Garg · Tengyu Ma · Huy Nguyen -
2014 Oral: On Communication Cost of Distributed Statistical Estimation and Dimensionality »
Ankit Garg · Tengyu Ma · Huy Nguyen