Timezone: »

Test time Adaptation through Perturbation Robustness
Prabhu Teja Sivaprasad · François Fleuret
Event URL: https://openreview.net/forum?id=GbBeI5z86uD »

Data samples generated by several real world processes are dynamic in nature i.e., their characteristics vary with time. Thus it is not possible to train and tackle all possible distributional shifts between training and inference, using the host of transfer learning methods in literature. In this paper, we tackle this problem of adapting to domain shift at inference time i.e., we do not change the training process, but quickly adapt the model at test-time to handle any domain shift. For this, we propose to enforce consistency of predictions of data sampled in the vicinity of test sample on the image manifold. On a host of test scenarios like dealing with corruptions (CIFAR-10-C and CIFAR-100-C), and domain adaptation (VisDA-C), our method is at par or significantly outperforms previous methods.

Author Information

Prabhu Teja Sivaprasad (EPFL)
François Fleuret (University of Geneva)

François Fleuret got a PhD in Mathematics from INRIA and the University of Paris VI in 2000, and an Habilitation degree in Mathematics from the University of Paris XIII in 2006. He is Full Professor in the department of Computer Science at the University of Geneva, and Adjunct Professor in the School of Engineering of the École Polytechnique Fédérale de Lausanne. He has published more than 80 papers in peer-reviewed international conferences and journals. He is Associate Editor of the IEEE Transactions on Pattern Analysis and Machine Intelligence, serves as Area Chair for NeurIPS, AAAI, and ICCV, and in the program committee of many top-tier international conferences in machine learning and computer vision. He was or is expert for multiple funding agencies. He is the inventor of several patents in the field of machine learning, and co-founder of Neural Concept SA, a company specializing in the development and commercialization of deep learning solutions for engineering design. His main research interest is machine learning, with a particular focus on computational aspects and sample efficiency.

More from the Same Authors