`

Timezone: »

 
Thinking Beyond Distributions in Testing Machine Learned Models
Negar Rostamzadeh · Ben Hutchinson · Vinodkumar Prabhakaran
Event URL: https://openreview.net/forum?id=5RcOaDH1zPp »

Testing within the machine learning (ML) community has centered around assessing a learned model's predictive performance measured against a test dataset. This test dataset is often drawn from the same distribution as the dataset used to train the model, and hence is expected to follow the same distribution as the training dataset. While recent work on robustness testing within ML community has pointed to the importance of testing against distributional shifts, these efforts also focus on estimating the likelihood of the model making an error against a reference dataset/distribution. In this paper, we argue that this view of testing actively discourages researchers and developers from looking into many other sources of robustness failures, for instance corner cases which may have severe impacts. We draw parallels with decades of work within software engineering testing focused on assessing a software system against various stress conditions, including corner cases, as opposed to solely focusing on average-case behaviour. Finally, we put forth a set of recommendations to broaden the view of machine learning testing to a rigorous practice.

Author Information

Negar Rostamzadeh (Google)
Ben Hutchinson (Google)
Vinodkumar Prabhakaran (Google LLC)

More from the Same Authors

  • 2020 : Non-Portability of Algorithmic Fairness in India »
    Nithya Sambasivan · Erin Arnesen · Ben Hutchinson · Vinodkumar Prabhakaran
  • 2021 : Artsheets for Art Datasets »
    Ramya Srinivasan · Emily Denton · Jordan Famularo · Negar Rostamzadeh · Fernando Diaz · Beth Coleman
  • 2019 : Poster Session »
    Jonathan Scarlett · Piotr Indyk · Ali Vakilian · Adrian Weller · Partha P Mitra · Benjamin Aubin · Bruno Loureiro · Florent Krzakala · Lenka Zdeborová · Kristina Monakhova · Joshua Yurtsever · Laura Waller · Hendrik Sommerhoff · Michael Moeller · Rushil Anirudh · Shuang Qiu · Xiaohan Wei · Zhuoran Yang · Jayaraman Thiagarajan · Salman Asif · Michael Gillhofer · Johannes Brandstetter · Sepp Hochreiter · Felix Petersen · Dhruv Patel · Assad Oberai · Akshay Kamath · Sushrut Karmalkar · Eric Price · Ali Ahmed · Zahra Kadkhodaie · Sreyas Mohan · Eero Simoncelli · Carlos Fernandez-Granda · Oscar Leong · Wesam Sakla · Rebecca Willett · Stephan Hoyer · Jascha Sohl-Dickstein · Samuel Greydanus · Gauri Jagatap · Chinmay Hegde · Michael Kellman · Jonathan Tamir · Nouamane Laanait · Ousmane Dia · Mirco Ravanelli · Jonathan Binas · Negar Rostamzadeh · Shirin Jalali · Tiantian Fang · Alex Schwing · Sébastien Lachapelle · Philippe Brouillard · Tristan Deleu · Simon Lacoste-Julien · Stella Yu · Arya Mazumdar · Ankit Singh Rawat · Yue Zhao · Jianshu Chen · Xiaoyang Li · Hubert Ramsauer · Gabrio Rizzuti · Nikolaos Mitsakos · Dingzhou Cao · Thomas Strohmer · Yang Li · Pei Peng · Gregory Ongie
  • 2019 : Global implications »
    Eirini Malliaraki · Jack Poulson · Vinodkumar Prabhakaran · Mona Sloane · Alexa Hagerty
  • 2019 Poster: Adaptive Cross-Modal Few-shot Learning »
    Chen Xing · Negar Rostamzadeh · Boris Oreshkin · Pedro O. Pinheiro
  • 2019 Poster: Neural Multisensory Scene Inference »
    Jae Hyun Lim · Pedro O. Pinheiro · Negar Rostamzadeh · Chris Pal · Sungjin Ahn
  • 2018 : Coffee Break and Poster Session I »
    Pim de Haan · Bin Wang · Dequan Wang · Aadil Hayat · Ibrahim Sobh · Muhammad Asif Rana · Thibault Buhet · Nicholas Rhinehart · Arjun Sharma · Alex Bewley · Michael Kelly · Lionel Blondé · Ozgur S. Oguz · Vaibhav Viswanathan · Jeroen Vanbaar · Konrad Żołna · Negar Rostamzadeh · Rowan McAllister · Sanjay Thakur · Alexandros Kalousis · Chelsea Sidrane · Sujoy Paul · Daphne Chen · Michal Garmulewicz · Henryk Michalewski · Coline Devin · Hongyu Ren · Jiaming Song · Wen Sun · Hanzhang Hu · Wulong Liu · Emilie Wirbel