Timezone: »
Model-agnostic meta-learning (MAML) is one of the most popular and widely adopted meta-learning algorithms nowadays, which achieves remarkable success in various learning problems. Yet, with the unique design of nested inner-loop and outer-loop updates which govern the task-specific and meta-model-centric learning respectively, the underlying learning objective of MAML still remains implicit and thus impedes a more straightforward understanding of it. In this paper, we provide a new perspective of the working mechanism of MAML. We discover that MAML is analogous to a meta-learner using a supervised contrastive objective function, where the query features are pulled towards the support features of the same class and against those of different classes, in which such contrastiveness is experimentally verified via an analysis based on the cosine similarity. Moreover, we reveal that the vanilla MAML algorithm has an undesirable interference term originating from the random initialization and the cross-task interaction. We therefore propose a simple but effective technique, zeroing trick, to alleviate such interference, where extensive experiments are then conducted on both miniImagenet and Omniglot datasets to demonstrate the consistent improvement brought by our proposed technique thus validating its effectiveness.
Author Information
Chia-Hsiang Kao (National Yang Ming Chiao Tung University)
Wei-Chen Chiu (National Chiao Tung University)
Pin-Yu Chen (IBM Research AI)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 : Contributed Talk (Oral): MAML is a Noisy Contrastive Learner »
Tue. Dec 7th 08:15 -- 08:25 PM Room
More from the Same Authors
-
2020 : Paper 10: Certified Interpretability Robustness for Class Activation Mapping »
Alex Gu · Tsui-Wei Weng · Pin-Yu Chen · Sijia Liu · Luca Daniel -
2021 : Certified Robustness for Free in Differentially Private Federated Learning »
Chulin Xie · Yunhui Long · Pin-Yu Chen · Krishnaram Kenthapadi · Bo Li -
2021 : QTN-VQC: An End-to-End Learning Framework for Quantum Neural Networks »
Jun Qi · Huck Yang · Pin-Yu Chen -
2021 : Pessimistic Model Selection for Offline Deep Reinforcement Learning »
Huck Yang · Yifan Cui · Pin-Yu Chen -
2022 : Visual Prompting for Adversarial Robustness »
Aochuan Chen · Peter Lorenz · Yuguang Yao · Pin-Yu Chen · Sijia Liu -
2022 : Do Domain Generalization Methods Generalize Well? »
Akshay Mehra · Bhavya Kailkhura · Pin-Yu Chen · Jihun Hamm -
2022 : On the Adversarial Robustness of Vision Transformers »
Rulin Shao · Zhouxing Shi · Jinfeng Yi · Pin-Yu Chen · Cho-Jui Hsieh -
2022 : Panel »
Pin-Yu Chen · Alex Gittens · Bo Li · Celia Cintas · Hilde Kuehne · Payel Das -
2022 : Q & A »
Sayak Paul · Sijia Liu · Pin-Yu Chen -
2022 : Deep dive on foundation models for computer vision »
Pin-Yu Chen -
2022 Tutorial: Foundational Robustness of Foundation Models »
Pin-Yu Chen · Sijia Liu · Sayak Paul -
2022 : Basics in foundation model and robustness »
Pin-Yu Chen · Sijia Liu -
2022 Poster: Make an Omelette with Breaking Eggs: Zero-Shot Learning for Novel Attribute Synthesis »
Yu-Hsuan Li · Tzu-Yin Chao · Ching-Chun Huang · Pin-Yu Chen · Wei-Chen Chiu -
2021 Poster: Predicting Deep Neural Network Generalization with Perturbation Response Curves »
Yair Schiff · Brian Quanz · Payel Das · Pin-Yu Chen -
2021 Poster: Mean-based Best Arm Identification in Stochastic Bandits under Reward Contamination »
Arpan Mukherjee · Ali Tajer · Pin-Yu Chen · Payel Das -
2021 Poster: Why Lottery Ticket Wins? A Theoretical Perspective of Sample Complexity on Sparse Neural Networks »
Shuai Zhang · Meng Wang · Sijia Liu · Pin-Yu Chen · Jinjun Xiong -
2021 Poster: CAFE: Catastrophic Data Leakage in Vertical Federated Learning »
Xiao Jin · Pin-Yu Chen · Chia-Yi Hsu · Chia-Mu Yu · Tianyi Chen -
2021 Poster: Adversarial Attack Generation Empowered by Min-Max Optimization »
Jingkang Wang · Tianyun Zhang · Sijia Liu · Pin-Yu Chen · Jiacen Xu · Makan Fardad · Bo Li -
2021 : Live Q&A session: MAML is a Noisy Contrastive Learner »
Chia-Hsiang Kao · Wei-Chen Chiu · Pin-Yu Chen -
2021 : SenSE: A Toolkit for Semantic Change Exploration via Word Embedding Alignment »
MaurĂcio Gruppi · Sibel Adali · Pin-Yu Chen -
2021 Poster: When does Contrastive Learning Preserve Adversarial Robustness from Pretraining to Finetuning? »
Lijie Fan · Sijia Liu · Pin-Yu Chen · Gaoyuan Zhang · Chuang Gan -
2021 Poster: Formalizing Generalization and Adversarial Robustness of Neural Networks to Weight Perturbations »
Yu-Lin Tsai · Chia-Yi Hsu · Chia-Mu Yu · Pin-Yu Chen -
2021 Poster: Understanding the Limits of Unsupervised Domain Adaptation via Data Poisoning »
Akshay Mehra · Bhavya Kailkhura · Pin-Yu Chen · Jihun Hamm -
2020 Poster: ScaleCom: Scalable Sparsified Gradient Compression for Communication-Efficient Distributed Training »
Chia-Yu Chen · Jiamin Ni · Songtao Lu · Xiaodong Cui · Pin-Yu Chen · Xiao Sun · Naigang Wang · Swagath Venkataramani · Vijayalakshmi (Viji) Srinivasan · Wei Zhang · Kailash Gopalakrishnan -
2020 Poster: Higher-Order Certification For Randomized Smoothing »
Jeet Mohapatra · Ching-Yun Ko · Tsui-Wei Weng · Pin-Yu Chen · Sijia Liu · Luca Daniel -
2020 Poster: Optimizing Mode Connectivity via Neuron Alignment »
Norman J Tatro · Pin-Yu Chen · Payel Das · Igor Melnyk · Prasanna Sattigeri · Rongjie Lai -
2020 Spotlight: Higher-Order Certification For Randomized Smoothing »
Jeet Mohapatra · Ching-Yun Ko · Tsui-Wei Weng · Pin-Yu Chen · Sijia Liu · Luca Daniel -
2019 : Poster Session »
Ahana Ghosh · Javad Shafiee · Akhilan Boopathy · Alex Tamkin · Theodoros Vasiloudis · Vedant Nanda · Ali Baheri · Paul Fieguth · Andrew Bennett · Guanya Shi · Hao Liu · Arushi Jain · Jacob Tyo · Benjie Wang · Boxiao Chen · Carroll Wainwright · Chandramouli Shama Sastry · Chao Tang · Daniel S. Brown · David Inouye · David Venuto · Dhruv Ramani · Dimitrios Diochnos · Divyam Madaan · Dmitrii Krashenikov · Joel Oren · Doyup Lee · Eleanor Quint · elmira amirloo · Matteo Pirotta · Gavin Hartnett · Geoffroy Dubourg-Felonneau · Gokul Swamy · Pin-Yu Chen · Ilija Bogunovic · Jason Carter · Javier Garcia-Barcos · Jeet Mohapatra · Jesse Zhang · Jian Qian · John Martin · Oliver Richter · Federico Zaiter · Tsui-Wei Weng · Karthik Abinav Sankararaman · Kyriakos Polymenakos · Lan Hoang · mahdieh abbasi · Marco Gallieri · Mathieu Seurin · Matteo Papini · Matteo Turchetta · Matthew Sotoudeh · Mehrdad Hosseinzadeh · Nathan Fulton · Masatoshi Uehara · Niranjani Prasad · Oana-Maria Camburu · Patrik Kolaric · Philipp Renz · Prateek Jaiswal · Reazul Hasan Russel · Riashat Islam · Rishabh Agarwal · Alexander Aldrick · Sachin Vernekar · Sahin Lale · Sai Kiran Narayanaswami · Samuel Daulton · Sanjam Garg · Sebastian East · Shun Zhang · Soheil Dsidbari · Justin Goodwin · Victoria Krakovna · Wenhao Luo · Wesley Chung · Yuanyuan Shi · Yuh-Shyang Wang · Hongwei Jin · Ziping Xu -
2018 Poster: Zeroth-Order Stochastic Variance Reduction for Nonconvex Optimization »
Sijia Liu · Bhavya Kailkhura · Pin-Yu Chen · Paishun Ting · Shiyu Chang · Lisa Amini -
2018 Poster: Efficient Neural Network Robustness Certification with General Activation Functions »
Huan Zhang · Tsui-Wei Weng · Pin-Yu Chen · Cho-Jui Hsieh · Luca Daniel -
2018 Poster: Explanations based on the Missing: Towards Contrastive Explanations with Pertinent Negatives »
Amit Dhurandhar · Pin-Yu Chen · Ronny Luss · Chun-Chen Tu · Paishun Ting · Karthikeyan Shanmugam · Payel Das