Timezone: »

 
Differentiable Parametric Optimization Approach to Power System Load Modeling
Jan Drgona · Andrew August · Elliott Skomski

Mon Dec 13 09:25 AM -- 10:40 AM (PST) @
Event URL: https://openreview.net/forum?id=WJ_eCc0y-EM »

In this work, we propose a differentiable programming approach to data-driven modeling of distribution systems for electromechanical transient stability analysis. Our approach combines the traditional ZIP load model with a deep neural network formulated as a constrained nonlinear least-squares problem. We will discuss the formulation, setup, and training of the proposed model as a differentiable program. Finally, we will compare and investigate the performance of this new load model and present the results on a medium-scale 350-bus transmission-distribution network.

Author Information

Jan Drgona (Pacific Northwest National Laboratory)

I am a data scientist in the Physics and Computational Sciences Division (PCSD) at Pacific Northwest National Laboratory, Richland, WA. My current research interests fall in the intersection of model-based optimal control, constrained optimization, and machine learning.

Andrew August (Pacific Northwest National Lab)

I'm a Data Scientist at Pacific Northwest National Lab, based in Seattle, WA, USA.

Elliott Skomski (Pacific Northwest National Laboratory)

More from the Same Authors

  • 2020 : Prototypical Region Proposal Networks for Few-shot Localization and Classification »
    Elliott Skomski
  • 2020 : Physics-constrained Deep Recurrent Neural Models of Building Thermal Dynamics »
    Jan Drgona
  • 2023 Competition: The CityLearn Challenge 2023 »
    Zoltan Nagy · Kingsley Nweye · Sharada Mohanty · Ruchi Choudhary · Max Langtry · Gregor Henze · Jan Drgona · Sourav Dey · Alfonso Capozzoli · Mohamed Ouf
  • 2022 Workshop: Tackling Climate Change with Machine Learning »
    Peetak Mitra · Maria João Sousa · Mark Roth · Jan Drgona · Emma Strubell · Yoshua Bengio
  • 2022 Competition: The CityLearn Challenge 2022 »
    Zoltan Nagy · Kingsley Nweye · Sharada Mohanty · Siva Sankaranarayanan · Jan Drgona · Tianzhen Hong · Sourav Dey · Gregor Henze
  • 2021 Workshop: Tackling Climate Change with Machine Learning »
    Maria João Sousa · Hari Prasanna Das · Sally Simone Fobi · Jan Drgona · Tegan Maharaj · Yoshua Bengio
  • 2021 : Neural Differentiable Predictive Control »
    Jan Drgona · Aaron Tuor · Draguna Vrabie
  • 2021 Poster: On the Stochastic Stability of Deep Markov Models »
    Jan Drgona · Sayak Mukherjee · Jiaxin Zhang · Frank Liu · Mahantesh Halappanavar
  • 2019 : Lunch + Poster Session »
    Frederik Gerzer · Bill Yang Cai · Pieter-Jan Hoedt · Kelly Kochanski · Soo Kyung Kim · Yunsung Lee · Sunghyun Park · Sharon Zhou · Martin Gauch · Jonathan Wilson · Joyjit Chatterjee · Shamindra Shrotriya · Dimitri Papadimitriou · Christian Schön · Valentina Zantedeschi · Gabriella Baasch · Willem Waegeman · Gautier Cosne · Dara Farrell · Brendan Lucier · Letif Mones · Caleb Robinson · Tafara Chitsiga · Victor Kristof · Hari Prasanna Das · Yimeng Min · Alexandra Puchko · Alexandra Luccioni · Kyle Story · Jason Hickey · Yue Hu · Björn Lütjens · Zhecheng Wang · Renzhi Jing · Genevieve Flaspohler · Jingfan Wang · Saumya Sinha · Qinghu Tang · Armi Tiihonen · Ruben Glatt · Muge Komurcu · Jan Drgona · Juan Gomez-Romero · Ashish Kapoor · Dylan J Fitzpatrick · Alireza Rezvanifar · Adrian Albert · Olya (Olga) Irzak · Kara Lamb · Ankur Mahesh · Kiwan Maeng · Frederik Kratzert · Sorelle Friedler · Niccolo Dalmasso · Alex Robson · Lindiwe Malobola · Lucas Maystre · Yu-wen Lin · Surya Karthik Mukkavili · Brian Hutchinson · Alexandre Lacoste · Yanbing Wang · Zhengcheng Wang · Yinda Zhang · Victoria Preston · Jacob Pettit · Draguna Vrabie · Miguel Molina-Solana · Tonio Buonassisi · Andrew Annex · Tunai P Marques · Catalin Voss · Johannes Rausch · Max Evans