`

Timezone: »

 
Neuroevolution-Enhanced Multi-Objective Optimization for Mixed-Precision Quantization
Santiago Miret · Vui Seng Chua · Mattias Marder · Mariano Phielipp · Nilesh Jain · Somdeb Majumdar

Mon Dec 13 02:32 PM -- 02:42 PM (PST) @

Mixed-precision quantization is a powerful tool to enable memory and compute savings of neural network workloads by deploying different sets of bit-width precisions on separate compute operations. Recent research has shown significant progress in applying mixed-precision quantization techniques to reduce the memory footprint of various workloads, while also preserving task performance. Prior work, however, has often ignored additional objectives, such as bit-operations, that are important for deployment of workloads on hardware. Here we present a flexible and scalable framework for automated mixed-precision quantization that optimizes multiple objectives. Our framework relies on Neuroevolution-Enhanced Multi-Objective Optimization (NEMO), a novel search method, to find Pareto optimal mixed-precision configurations for memory and bit-operations objectives. Within NEMO, a population is divided into structurally distinct sub-populations (species) which jointly form the Pareto frontier of solutions for the multi-objective problem. At each generation, species are re-sized in proportion to the goodness of their contribution to the Pareto frontier. This allows NEMO to leverage established search techniques and neuroevolution methods to continually improve the goodness of the Pareto frontier. In our experiments we apply a graph-based representation to describe the underlying workload, enabling us to deploy graph neural networks trained by NEMO to find Pareto optimal configurations for various workloads trained on ImageNet. Compared to the state-of-the-art, we achieve competitive results on memory compression and superior results for compute compression for MobileNet-V2, ResNet50 and ResNeXt-101-32x8d, one of the largest ImageNet models amounting to a search space of ~10**146. A deeper analysis of the results obtained by NEMO also shows that both the graph representation and the species-based approach are critical in finding effective configurations for all workloads.

Author Information

Santiago Miret (Intel AI Lab)
Vui Seng Chua (University of Nottingham)
Mattias Marder (Intel)
Mariano Phielipp (Intel AI Labs)

Dr. Mariano Phielipp works at the Intel AI Lab inside the Intel Artificial Intelligence Products Group. His work includes research and development in deep learning, deep reinforcement learning, machine learning, and artificial intelligence. Since joining Intel, Dr. Phielipp has developed and worked on Computer Vision, Face Recognition, Face Detection, Object Categorization, Recommendation Systems, Online Learning, Automatic Rule Learning, Natural Language Processing, Knowledge Representation, Energy Based Algorithms, and other Machine Learning and AI-related efforts. Dr. Phielipp has also contributed to different disclosure committees, won an Intel division award related to Robotics, and has a large number of patents and pending patents. He has published on NeuriPS, ICML, ICLR, AAAI, IROS, IEEE, SPIE, IASTED, and EUROGRAPHICS-IEEE Conferences and Workshops.

Nilesh Jain (Intel Corp)
Somdeb Majumdar (Intel Labs)

More from the Same Authors