Timezone: »
Interest in applying Reinforcement Learning (RL) techniques to compiler optimizations is increasing rapidly, but compiler research has a high entry barrier. Unlike in other domains, compiler and RL researchers do not have access to the infrastructure and datasets that enable fast iteration and development of ideas, and getting started requires a significant engineering investment.
We present CompilerGym, a community infrastructure for exposing compiler optimizations as RL environments, and initial results in applying RL to these environments. Our findings suggest two key challenges in RL for compilers is representation learning and transfer learning between program domains.
Author Information
Chris Cummins (Meta)
Chris Cummins is a Research Engineer at Facebookâs AI Research. His research focuses on fusing AI techniques with compilers and systems optimization. Before joining Facebook Chris was a postdoc at the University of Edinburgh where he received Ph.D. and MSc degrees. He completed his MEng degree at Aston University. He is the recipient of numerous best paper awards, the SISCA Best Scottish PhD Award, and the Institute of Engineering and Technology Prize.
Bram Wasti (Facebook)
Brandon Cui (Facebook AI Research)
Olivier Teytaud (Facebook)
Benoit Steiner (Facebook AI Research)
Yuandong Tian (Facebook AI Research)
Hugh Leather (Facebook AI Research)
More from the Same Authors
-
2020 : Iterative Value Learning for ThroughputOptimization of Deep Learning Workloads »
Benoit Steiner -
2022 : LoopStack: ML-friendly ML Compiler Stack »
Bram Wasti · Dejan Grubisic · Benoit Steiner · Aleksandar Zlateski -
2023 Poster: CoLLAT: On Adding Fine-grained Audio Understanding to Language Models using Token-Level Locked-Language Tuning »
Dadallage A R Silva · Spencer Whitehead · Christopher Lengerich · Hugh Leather -
2022 : Panel RL Implementation »
Xiaolin Ge · Alborz Geramifard · Kence Anderson · Craig Buhr · Robert Nishihara · Yuandong Tian -
2021 : Closing Remarks »
Jonathan Raiman · Mimee Xu · Martin Maas · Anna Goldie · Azade Nova · Benoit Steiner -
2021 : ML-guided iterative refinement for system optimization »
Yuandong Tian -
2021 : Opening Remarks »
Jonathan Raiman · Anna Goldie · Benoit Steiner · Azade Nova · Martin Maas · Mimee Xu -
2021 Poster: Latent Execution for Neural Program Synthesis Beyond Domain-Specific Languages »
Xinyun Chen · Dawn Song · Yuandong Tian -
2021 : Machine Learning for Combinatorial Optimization + Q&A »
Maxime Gasse · Simon Bowly · Chris Cameron · Quentin Cappart · Jonas Charfreitag · Laurent Charlin · Shipra Agrawal · Didier Chetelat · Justin Dumouchelle · Ambros Gleixner · Aleksandr Kazachkov · Elias Khalil · Pawel Lichocki · Andrea Lodi · Miles Lubin · Christopher Morris · Dimitri Papageorgiou · Augustin Parjadis · Sebastian Pokutta · Antoine Prouvost · Yuandong Tian · Lara Scavuzzo · Giulia Zarpellon -
2021 Poster: NovelD: A Simple yet Effective Exploration Criterion »
Tianjun Zhang · Huazhe Xu · Xiaolong Wang · Yi Wu · Kurt Keutzer · Joseph Gonzalez · Yuandong Tian -
2021 Poster: MADE: Exploration via Maximizing Deviation from Explored Regions »
Tianjun Zhang · Paria Rashidinejad · Jiantao Jiao · Yuandong Tian · Joseph Gonzalez · Stuart Russell -
2021 Poster: Learning Space Partitions for Path Planning »
Kevin Yang · Tianjun Zhang · Chris Cummins · Brandon Cui · Benoit Steiner · Linnan Wang · Joseph Gonzalez · Dan Klein · Yuandong Tian -
2020 : QA: Yuandong Tian »
Yuandong Tian -
2020 : Contributed Talk: Yuandong Tian »
Yuandong Tian -
2020 : Invited Talk (Yuandong Tian) »
Yuandong Tian -
2020 : Invited Speaker: Benoit Steiner »
Benoit Steiner -
2020 : Program Graphs for Machine Learning »
Chris Cummins -
2020 Poster: Learning Search Space Partition for Black-box Optimization using Monte Carlo Tree Search »
Linnan Wang · Rodrigo Fonseca · Yuandong Tian -
2020 Poster: Adversarial Attacks on Linear Contextual Bandits »
Evrard Garcelon · Baptiste Roziere · Laurent Meunier · Jean Tarbouriech · Olivier Teytaud · Alessandro Lazaric · Matteo Pirotta -
2020 Poster: Joint Policy Search for Multi-agent Collaboration with Imperfect Information »
Yuandong Tian · Qucheng Gong · Yu Jiang -
2019 Poster: Coda: An End-to-End Neural Program Decompiler »
Cheng Fu · Huili Chen · Haolan Liu · Xinyun Chen · Yuandong Tian · Farinaz Koushanfar · Jishen Zhao -
2019 Poster: Hierarchical Decision Making by Generating and Following Natural Language Instructions »
Hengyuan Hu · Denis Yarats · Qucheng Gong · Yuandong Tian · Mike Lewis -
2019 Poster: One ticket to win them all: generalizing lottery ticket initializations across datasets and optimizers »
Ari Morcos · Haonan Yu · Michela Paganini · Yuandong Tian -
2019 Poster: Learning to Perform Local Rewriting for Combinatorial Optimization »
Xinyun Chen · Yuandong Tian -
2017 Poster: ELF: An Extensive, Lightweight and Flexible Research Platform for Real-time Strategy Games »
Yuandong Tian · Qucheng Gong · Wendy Shang · Yuxin Wu · Larry Zitnick -
2017 Oral: ELF: An Extensive, Lightweight and Flexible Research Platform for Real-time Strategy Games »
Yuandong Tian · Qucheng Gong · Wendy Shang · Yuxin Wu · Larry Zitnick