`

Timezone: »

 
Secure Byzantine-Robust Distributed Learning via Clustering
Raj Kiriti Velicheti · Sanmi Koyejo

Federated learning systems that jointly preserve Byzantine robustness and privacy have remained an open problem. Robust aggregation, the standard defense for Byzantine attacks, generally requires server access to individual updates or nonlinear computation -- thus is incompatible with privacy-preserving methods such as secure aggregation via multiparty computation. To this end, we propose SHARE (Secure Hierarchical Robust Aggregation), a distributed learning framework designed to cryptographically preserve client update privacy and robustness to Byzantine adversaries simultaneously. The key idea is to incorporate secure averaging among randomly clustered clients before filtering malicious updates through robust aggregation. Experiments show that SHARE has similar robustness guarantees as existing techniques while enhancing privacy.

Author Information

Raj Kiriti Velicheti (University of Illinois, Urbana-Champaign)
Sanmi Koyejo (University of Illinois at Urbana-Champaign & Google Research)
Sanmi Koyejo

Sanmi Koyejo is an Assistant Professor in the Department of Computer Science at the University of Illinois at Urbana-Champaign and a research scientist at Google AI in Accra. Koyejo's research interests are in developing the principles and practice of adaptive and robust machine learning. Additionally, Koyejo focuses on applications to biomedical imaging and neuroscience. Koyejo co-founded the Black in AI organization and currently serves on its board.

More from the Same Authors