Timezone: »
As machine learning becomes increasingly incorporated in crucial decision-making scenarios such as healthcare, recruitment, and loan assessment, there have been increasing concerns about the privacy and fairness of such systems. Federated learning has been viewed as a promising solution for collaboratively learning machine learning models among multiple parties while maintaining the privacy of their local data. However, federated learning also poses new challenges in mitigating the potential bias against certain populations (e.g., demographic groups), which typically requires centralized access to the sensitive information (e.g., race, gender) of each data point. Motivated by the importance and challenges of group fairness in federated learning, in this work, we propose FairFed, a novel algorithm to enhance group fairness via a fairness-aware aggregation method, aiming to provide fair model performance across different sensitive groups (e.g., racial, gender groups) while maintaining high utility. The formulation can potentially provide more flexibility in the customized local debiasing strategies for each client. When running federated training on two widely investigated fairness datasets, Adult and COMPAS, our proposed method outperforms the state-of-the-art fair federated learning frameworks under a high heterogeneous sensitive attribute distribution.
Author Information
Yahya Ezzeldin (University of Southern California)
Shen Yan (University of Southern California)
Chaoyang He (University of Southern California)
Emilio Ferrara (University of Southern California, USA)
Salman Avestimehr (University of Southern California)
More from the Same Authors
-
2020 : On Polynomial Approximations for Privacy-Preserving and Verifiable ReLU Networks »
Salman Avestimehr -
2021 Spotlight: MEST: Accurate and Fast Memory-Economic Sparse Training Framework on the Edge »
Geng Yuan · Xiaolong Ma · Wei Niu · Zhengang Li · Zhenglun Kong · Ning Liu · Yifan Gong · Zheng Zhan · Chaoyang He · Qing Jin · Siyue Wang · Minghai Qin · Bin Ren · Yanzhi Wang · Sijia Liu · Xue Lin -
2021 : Basil: A Fast and Byzantine-Resilient Approach for Decentralized Training »
Ahmed Elkordy · Saurav Prakash · Salman Avestimehr -
2021 : Secure Aggregation for Buffered Asynchronous Federated Learning »
Jinhyun So · Ramy Ali · Basak Guler · Salman Avestimehr -
2022 : Federated Learning of Large Models at the Edge via Principal Sub-Model Training »
Yue Niu · Saurav Prakash · Souvik Kundu · Sunwoo Lee · Salman Avestimehr -
2022 : Federated Sparse Training: Lottery Aware Model Compression for Resource Constrained Edge »
Sara Babakniya · Souvik Kundu · Saurav Prakash · Yue Niu · Salman Avestimehr -
2022 : pFLSynth: Personalized Federated Learning of Image Synthesis in Multi-Contrast MRI »
Onat Dalmaz · Muhammad U Mirza · Gökberk Elmas · Muzaffer Özbey · Salman Ul Hassan Dar · Emir Ceyani · Salman Avestimehr · Tolga Cukur -
2022 : pFLSynth: Personalized Federated Learning of Image Synthesis in Multi-Contrast MRI »
Onat Dalmaz · Muhammad U Mirza · Gökberk Elmas · Muzaffer Özbey · Salman Ul Hassan Dar · Emir Ceyani · Salman Avestimehr · Tolga Cukur -
2022 Spotlight: Self-Aware Personalized Federated Learning »
Huili Chen · Jie Ding · Eric W. Tramel · Shuang Wu · Anit Kumar Sahu · Salman Avestimehr · Tao Zhang -
2022 : LightVeriFL: Lightweight and Verifiable Secure Federated Learning »
Baturalp Buyukates · Jinhyun So · Hessam Mahdavifar · Salman Avestimehr -
2022 Poster: Self-Aware Personalized Federated Learning »
Huili Chen · Jie Ding · Eric W. Tramel · Shuang Wu · Anit Kumar Sahu · Salman Avestimehr · Tao Zhang -
2022 Poster: FLamby: Datasets and Benchmarks for Cross-Silo Federated Learning in Realistic Healthcare Settings »
Jean Ogier du Terrail · Samy-Safwan Ayed · Edwige Cyffers · Felix Grimberg · Chaoyang He · Regis Loeb · Paul Mangold · Tanguy Marchand · Othmane Marfoq · Erum Mushtaq · Boris Muzellec · Constantin Philippenko · Santiago Silva · Maria Teleńczuk · Shadi Albarqouni · Salman Avestimehr · Aurélien Bellet · Aymeric Dieuleveut · Martin Jaggi · Sai Praneeth Karimireddy · Marco Lorenzi · Giovanni Neglia · Marc Tommasi · Mathieu Andreux -
2021 Poster: MEST: Accurate and Fast Memory-Economic Sparse Training Framework on the Edge »
Geng Yuan · Xiaolong Ma · Wei Niu · Zhengang Li · Zhenglun Kong · Ning Liu · Yifan Gong · Zheng Zhan · Chaoyang He · Qing Jin · Siyue Wang · Minghai Qin · Bin Ren · Yanzhi Wang · Sijia Liu · Xue Lin -
2020 Poster: Group Knowledge Transfer: Federated Learning of Large CNNs at the Edge »
Chaoyang He · Murali Annavaram · Salman Avestimehr -
2020 Poster: A Scalable Approach for Privacy-Preserving Collaborative Machine Learning »
Jinhyun So · Basak Guler · Salman Avestimehr -
2020 Poster: Minimax Lower Bounds for Transfer Learning with Linear and One-hidden Layer Neural Networks »
Mohammadreza Mousavi Kalan · Zalan Fabian · Salman Avestimehr · Mahdi Soltanolkotabi -
2018 Poster: Pipe-SGD: A Decentralized Pipelined SGD Framework for Distributed Deep Net Training »
Youjie Li · Mingchao Yu · Songze Li · Salman Avestimehr · Nam Sung Kim · Alex Schwing -
2018 Poster: GradiVeQ: Vector Quantization for Bandwidth-Efficient Gradient Aggregation in Distributed CNN Training »
Mingchao Yu · Zhifeng Lin · Krishna Narra · Songze Li · Youjie Li · Nam Sung Kim · Alex Schwing · Murali Annavaram · Salman Avestimehr -
2017 Poster: Polynomial Codes: an Optimal Design for High-Dimensional Coded Matrix Multiplication »
Qian Yu · Mohammad Maddah-Ali · Salman Avestimehr