Timezone: »
Vertical Federated Learning (VFL) is a distributed learning paradigm that allows multiple agents to jointly train a global model when each agent holds a different subset of features for the same sample(s). VFL is known to be vulnerable to backdoor attacks. However, unlike the standard horizontal federated learning, improving the robustness of VFL remains challenging. To this end, we propose RVFR, a novel robust VFL training and inference framework. The key to our approach is to ensure that with a low-rank feature subspace, a small number of attacked samples, and other mild assumptions, RVFR recovers the underlying uncorrupted features with guarantees, thus sanitizes the model against a vast range of backdoor attacks. Further, RVFR also defends against inference-time adversarial feature attack. Our empirical studies further corroborate the robustness of the proposed framework.
Author Information
Jing Liu (UIUC)
Chulin Xie (University of Illinois at Urbana-Champaign)
Krishnaram Kenthapadi (Amazon)
Sanmi Koyejo (University of Illinois at Urbana-Champaign & Google Research)

Sanmi Koyejo is an Assistant Professor in the Department of Computer Science at the University of Illinois at Urbana-Champaign and a research scientist at Google AI in Accra. Koyejo's research interests are in developing the principles and practice of adaptive and robust machine learning. Additionally, Koyejo focuses on applications to biomedical imaging and neuroscience. Koyejo co-founded the Black in AI organization and currently serves on its board.
Bo Li (UIUC)
More from the Same Authors
-
2021 : Adversarial GLUE: A Multi-Task Benchmark for Robustness Evaluation of Language Models »
Boxin Wang · Chejian Xu · Shuohang Wang · Zhe Gan · Yu Cheng · Jianfeng Gao · Ahmed Awadallah · Bo Li -
2021 : Defuse: Training More Robust Models through Creation and Correction of Novel Model Errors »
Dylan Slack · Krishnaram Kenthapadi -
2021 : Probabilistic Performance Metric Elicitation »
Zachary Robertson · Hantao Zhang · Sanmi Koyejo -
2021 : Certified Robustness for Free in Differentially Private Federated Learning »
Chulin Xie · Yunhui Long · Pin-Yu Chen · Krishnaram Kenthapadi · Bo Li -
2021 : Robust and Personalized Federated Learning with Spurious Features: an Adversarial Approach »
Xiaoyang Wang · Han Zhao · Klara Nahrstedt · Sanmi Koyejo -
2021 : Secure Byzantine-Robust Distributed Learning via Clustering »
Raj Kiriti Velicheti · Sanmi Koyejo -
2021 : Exploiting Causal Chains for Domain Generalization »
Olawale Salaudeen · Sanmi Koyejo -
2021 : Distribution Preserving Bayesian Coresets using Set Constraints »
Shovik Guha · Rajiv Khanna · Sanmi Koyejo -
2021 : What Would Jiminy Cricket Do? Towards Agents That Behave Morally »
Dan Hendrycks · Mantas Mazeika · Andy Zou · Sahil Patel · Christine Zhu · Jesus Navarro · Dawn Song · Bo Li · Jacob Steinhardt -
2022 Poster: VF-PS: How to Select Important Participants in Vertical Federated Learning, Efficiently and Securely? »
Jiawei Jiang · Lukas Burkhalter · Fangcheng Fu · Bolin Ding · Bo Du · Anwar Hithnawi · Bo Li · Ce Zhang -
2022 : Improving Vertical Federated Learning by Efficient Communication with ADMM »
Chulin Xie · Pin-Yu Chen · Ce Zhang · Bo Li -
2022 : Metric Elicitation; Moving from Theory to Practice »
Safinah Ali · Sohini Upadhyay · Gaurush Hiranandani · Elena Glassman · Sanmi Koyejo -
2022 : Benchmarking Robustness under Distribution Shift of Multimodal Image-Text Models »
Jielin Qiu · Yi Zhu · Xingjian Shi · Zhiqiang Tang · DING ZHAO · Bo Li · Mu Li -
2022 : DensePure: Understanding Diffusion Models towards Adversarial Robustness »
Zhongzhu Chen · Kun Jin · Jiongxiao Wang · Weili Nie · Mingyan Liu · Anima Anandkumar · Bo Li · Dawn Song -
2022 : Fifteen-minute Competition Overview Video »
Nathan Drenkow · Raman Arora · Gino Perrotta · Todd Neller · Ryan Gardner · Mykel J Kochenderfer · Jared Markowitz · Corey Lowman · Casey Richardson · Bo Li · Bart Paulhamus · Ashley J Llorens · Andrew Newman -
2022 : The Curse of Low Task Diversity: On the Failure of Transfer Learning to Outperform MAML and Their Empirical Equivalence »
Brando Miranda · Patrick Yu · Yu-Xiong Wang · Sanmi Koyejo -
2022 : Batch Active Learning from the Perspective of Sparse Approximation »
Maohao Shen · Yibo Jacky Zhang · Bowen Jiang · Sanmi Koyejo -
2022 : On the Robustness of Safe Reinforcement Learning under Observational Perturbations »
ZUXIN LIU · Zijian Guo · Zhepeng Cen · Huan Zhang · Jie Tan · Bo Li · DING ZHAO -
2023 Competition: TDC 2023 (LLM Edition): The Trojan Detection Challenge »
Mantas Mazeika · Andy Zou · Norman Mu · Long Phan · Zifan Wang · Chunru Yu · Adam Khoja · Fengqing Jiang · Aidan O'Gara · Zhen Xiang · Arezoo Rajabi · Dan Hendrycks · Radha Poovendran · Bo Li · David Forsyth -
2022 : Contributed Talk: DensePure: Understanding Diffusion Models towards Adversarial Robustness »
Zhongzhu Chen · Kun Jin · Jiongxiao Wang · Weili Nie · Mingyan Liu · Anima Anandkumar · Bo Li · Dawn Song -
2022 Workshop: Trustworthy and Socially Responsible Machine Learning »
Huan Zhang · Linyi Li · Chaowei Xiao · J. Zico Kolter · Anima Anandkumar · Bo Li -
2022 Spotlight: Fairness in Federated Learning via Core-Stability »
Bhaskar Ray Chaudhury · Linyi Li · Mintong Kang · Bo Li · Ruta Mehta -
2022 Competition: The Trojan Detection Challenge »
Mantas Mazeika · Dan Hendrycks · Huichen Li · Xiaojun Xu · Andy Zou · Sidney Hough · Arezoo Rajabi · Dawn Song · Radha Poovendran · Bo Li · David Forsyth -
2022 Spotlight: LOT: Layer-wise Orthogonal Training on Improving l2 Certified Robustness »
Xiaojun Xu · Linyi Li · Bo Li -
2022 Spotlight: Lightning Talks 5B-1 »
Devansh Arpit · Xiaojun Xu · Zifan Shi · Ivan Skorokhodov · Shayan Shekarforoush · Zhan Tong · Yiqun Wang · Shichong Peng · Linyi Li · Ivan Skorokhodov · Huan Wang · Yibing Song · David Lindell · Yinghao Xu · Seyed Alireza Moazenipourasil · Sergey Tulyakov · Peter Wonka · Yiqun Wang · Ke Li · David Fleet · Yujun Shen · Yingbo Zhou · Bo Li · Jue Wang · Peter Wonka · Marcus Brubaker · Caiming Xiong · Limin Wang · Deli Zhao · Qifeng Chen · Dit-Yan Yeung -
2022 Competition: Reconnaissance Blind Chess: An Unsolved Challenge for Multi-Agent Decision Making Under Uncertainty »
Ryan Gardner · Gino Perrotta · Corey Lowman · Casey Richardson · Andrew Newman · Jared Markowitz · Nathan Drenkow · Bart Paulhamus · Ashley J Llorens · Todd Neller · Raman Arora · Bo Li · Mykel J Kochenderfer -
2022 Spotlight: Certifying Some Distributional Fairness with Subpopulation Decomposition »
Mintong Kang · Linyi Li · Maurice Weber · Yang Liu · Ce Zhang · Bo Li -
2022 Spotlight: Lightning Talks 1A-4 »
Siwei Wang · Jing Liu · Nianqiao Ju · Shiqian Li · Eloïse Berthier · Muhammad Faaiz Taufiq · Arsene Fansi Tchango · Chen Liang · Chulin Xie · Jordan Awan · Jean-Francois Ton · Ziad Kobeissi · Wenguan Wang · Xinwang Liu · Kewen Wu · Rishab Goel · Jiaxu Miao · Suyuan Liu · Julien Martel · Ruobin Gong · Francis Bach · Chi Zhang · Rob Cornish · Sanmi Koyejo · Zhi Wen · Yee Whye Teh · Yi Yang · Jiaqi Jin · Bo Li · Yixin Zhu · Vinayak Rao · Wenxuan Tu · Gaetan Marceau Caron · Arnaud Doucet · Xinzhong Zhu · Joumana Ghosn · En Zhu -
2022 Spotlight: Lightning Talks 1A-3 »
Kimia Noorbakhsh · Ronan Perry · Qi Lyu · Jiawei Jiang · Christian Toth · Olivier Jeunen · Xin Liu · Yuan Cheng · Lei Li · Manuel Rodriguez · Julius von Kügelgen · Lars Lorch · Nicolas Donati · Lukas Burkhalter · Xiao Fu · Zhongdao Wang · Songtao Feng · Ciarán Gilligan-Lee · Rishabh Mehrotra · Fangcheng Fu · Jing Yang · Bernhard Schölkopf · Ya-Li Li · Christian Knoll · Maks Ovsjanikov · Andreas Krause · Shengjin Wang · Hong Zhang · Mounia Lalmas · Bolin Ding · Bo Du · Yingbin Liang · Franz Pernkopf · Robert Peharz · Anwar Hithnawi · Julius von Kügelgen · Bo Li · Ce Zhang -
2022 Spotlight: VF-PS: How to Select Important Participants in Vertical Federated Learning, Efficiently and Securely? »
Jiawei Jiang · Lukas Burkhalter · Fangcheng Fu · Bolin Ding · Bo Du · Anwar Hithnawi · Bo Li · Ce Zhang -
2022 Spotlight: CoPur: Certifiably Robust Collaborative Inference via Feature Purification »
Jing Liu · Chulin Xie · Sanmi Koyejo · Bo Li -
2022 : Panel »
Pin-Yu Chen · Alex Gittens · Bo Li · Celia Cintas · Hilde Kuehne · Payel Das -
2022 : Trustworthy Machine Learning in Autonomous Driving »
Bo Li -
2022 Workshop: Decentralization and Trustworthy Machine Learning in Web3: Methodologies, Platforms, and Applications »
Jian Lou · Zhiguang Wang · Chejian Xu · Bo Li · Dawn Song -
2022 : Invited Talk #5, Privacy-Preserving Data Synthesis for General Purposes, Bo Li »
Bo Li -
2022 : Fairness Panel »
Freedom Gumedze · Rachel Cummings · Bo Li · Robert Tillman · Edward Choi -
2022 : Trustworthy Federated Learning »
Bo Li -
2022 Poster: Improving Certified Robustness via Statistical Learning with Logical Reasoning »
Zhuolin Yang · Zhikuan Zhao · Boxin Wang · Jiawei Zhang · Linyi Li · Hengzhi Pei · Bojan Karlaš · Ji Liu · Heng Guo · Ce Zhang · Bo Li -
2022 Poster: Diagnosing failures of fairness transfer across distribution shift in real-world medical settings »
Jessica Schrouff · Natalie Harris · Sanmi Koyejo · Ibrahim Alabdulmohsin · Eva Schnider · Krista Opsahl-Ong · Alexander Brown · Subhrajit Roy · Diana Mincu · Christina Chen · Awa Dieng · Yuan Liu · Vivek Natarajan · Alan Karthikesalingam · Katherine Heller · Silvia Chiappa · Alexander D'Amour -
2022 Poster: Untargeted Backdoor Watermark: Towards Harmless and Stealthy Dataset Copyright Protection »
Yiming Li · Yang Bai · Yong Jiang · Yong Yang · Shu-Tao Xia · Bo Li -
2022 Poster: Fairness in Federated Learning via Core-Stability »
Bhaskar Ray Chaudhury · Linyi Li · Mintong Kang · Bo Li · Ruta Mehta -
2022 Poster: Generalizing Goal-Conditioned Reinforcement Learning with Variational Causal Reasoning »
Wenhao Ding · Haohong Lin · Bo Li · DING ZHAO -
2022 Poster: Certifying Some Distributional Fairness with Subpopulation Decomposition »
Mintong Kang · Linyi Li · Maurice Weber · Yang Liu · Ce Zhang · Bo Li -
2022 Poster: LOT: Layer-wise Orthogonal Training on Improving l2 Certified Robustness »
Xiaojun Xu · Linyi Li · Bo Li -
2022 Poster: A Reduction to Binary Approach for Debiasing Multiclass Datasets »
Ibrahim Alabdulmohsin · Jessica Schrouff · Sanmi Koyejo -
2022 Poster: CoPur: Certifiably Robust Collaborative Inference via Feature Purification »
Jing Liu · Chulin Xie · Sanmi Koyejo · Bo Li -
2022 Poster: Fair Wrapping for Black-box Predictions »
Alexander Soen · Ibrahim Alabdulmohsin · Sanmi Koyejo · Yishay Mansour · Nyalleng Moorosi · Richard Nock · Ke Sun · Lexing Xie -
2022 Poster: Exploring the Limits of Domain-Adaptive Training for Detoxifying Large-Scale Language Models »
Boxin Wang · Wei Ping · Chaowei Xiao · Peng Xu · Mostofa Patwary · Mohammad Shoeybi · Bo Li · Anima Anandkumar · Bryan Catanzaro -
2022 Poster: SafeBench: A Benchmarking Platform for Safety Evaluation of Autonomous Vehicles »
Chejian Xu · Wenhao Ding · Weijie Lyu · ZUXIN LIU · Shuai Wang · Yihan He · Hanjiang Hu · DING ZHAO · Bo Li -
2022 Poster: A Nonconvex Framework for Structured Dynamic Covariance Recovery »
Katherine Tsai · Mladen Kolar · Sanmi Koyejo -
2022 Poster: General Cutting Planes for Bound-Propagation-Based Neural Network Verification »
Huan Zhang · Shiqi Wang · Kaidi Xu · Linyi Li · Bo Li · Suman Jana · Cho-Jui Hsieh · J. Zico Kolter -
2021 : [S6] Defuse: Training More Robust Models through Creation and Correction of Novel Model Errors »
Dylan Slack · Krishnaram Kenthapadi -
2021 : Career and Life: Panel Discussion - Bo Li, Adriana Romero-Soriano, Devi Parikh, and Emily Denton »
Remi Denton · Devi Parikh · Bo Li · Adriana Romero -
2021 : Live Q&A with Bo Li »
Bo Li -
2021 : Invited talk – Trustworthy Machine Learning via Logic Inference, Bo Li »
Bo Li -
2021 : Adversarial GLUE: A Multi-Task Benchmark for Robustness Evaluation of Language Models »
Boxin Wang · Chejian Xu · Shuohang Wang · Zhe Gan · Yu Cheng · Jianfeng Gao · Ahmed Awadallah · Bo Li -
2021 Poster: G-PATE: Scalable Differentially Private Data Generator via Private Aggregation of Teacher Discriminators »
Yunhui Long · Boxin Wang · Zhuolin Yang · Bhavya Kailkhura · Aston Zhang · Carl Gunter · Bo Li -
2021 Poster: Anti-Backdoor Learning: Training Clean Models on Poisoned Data »
Yige Li · Xixiang Lyu · Nodens Koren · Lingjuan Lyu · Bo Li · Xingjun Ma -
2021 Poster: Adversarial Attack Generation Empowered by Min-Max Optimization »
Jingkang Wang · Tianyun Zhang · Sijia Liu · Pin-Yu Chen · Jiacen Xu · Makan Fardad · Bo Li -
2021 : Reconnaissance Blind Chess + Q&A »
Ryan Gardner · Gino Perrotta · Corey Lowman · Casey Richardson · Andrew Newman · Jared Markowitz · Nathan Drenkow · Bart Paulhamus · Ashley J Llorens · Todd Neller · Raman Arora · Bo Li · Mykel J Kochenderfer -
2021 Poster: TRS: Transferability Reduced Ensemble via Promoting Gradient Diversity and Model Smoothness »
Zhuolin Yang · Linyi Li · Xiaojun Xu · Shiliang Zuo · Qian Chen · Pan Zhou · Benjamin Rubinstein · Ce Zhang · Bo Li -
2020 Workshop: Workshop on Dataset Curation and Security »
Nathalie Baracaldo · Yonatan Bisk · Avrim Blum · Michael Curry · John Dickerson · Micah Goldblum · Tom Goldstein · Bo Li · Avi Schwarzschild -
2020 Poster: Robust Deep Reinforcement Learning against Adversarial Perturbations on State Observations »
Huan Zhang · Hongge Chen · Chaowei Xiao · Bo Li · Mingyan Liu · Duane Boning · Cho-Jui Hsieh -
2020 Spotlight: Robust Deep Reinforcement Learning against Adversarial Perturbations on State Observations »
Huan Zhang · Hongge Chen · Chaowei Xiao · Bo Li · Mingyan Liu · Duane Boning · Cho-Jui Hsieh -
2020 Poster: On Convergence of Nearest Neighbor Classifiers over Feature Transformations »
Luka Rimanic · Cedric Renggli · Bo Li · Ce Zhang -
2020 Expo Talk Panel: Fairness, Explainability, and Privacy in AI/ML Systems »
Vidya Ravipati · Erika Pelaez Coyotl · Ujjwal Ratan · Krishnaram Kenthapadi -
2019 Tutorial: Representation Learning and Fairness »
Moustapha Cisse · Sanmi Koyejo