Timezone: »
Federated learning aims to collaboratively train a global model across a set of clients without data sharing among them. In most earlier studies, a global model architecture, either predefined by experts or searched automatically, is applied to all the clients. However, this convention is impractical for two reasons: 1) The clients may have heterogeneous resource constraints and only be able to handle models with particular configurations, imposing high requirements on the model’s versatility; 2) Data in the real-world federated system are highly non-IID, which means a model architecture optimized for all clients may not achieve optimal performance on personalized data on individual clients. In this work, we address the above two issues by proposing a novel framework that automatically discovers personalized model architectures tailored for clients’ specific resource constraints and data, called Architecture Personalization Federated Learning (APFL). APFL first trains a sizable global architecture and slims it adaptively to meet computational budgets on edge devices. Then, APFL offers a communication-efficient federated partial aggregation (FedPA) algorithm to allow mutual learning among clients with diverse local architectures, which largely boosts the overall performance. Extensive empirical evaluations on three federated datasets clearly demonstrate that APFL provides affordable and personalized architectures for individual clients, costing fewer communication bytes and achieving higher accuracy compared with manually defined architectures under the same resource budgets.
Author Information
Mi Luo (National University of Singapore)
Fei Chen (Huawei Noah's Ark Lab)
Zhenguo Li (Noah's Ark Lab, Huawei Tech Investment Co Ltd)
Jiashi Feng (UC Berkeley)
More from the Same Authors
-
2021 : One Million Scenes for Autonomous Driving: ONCE Dataset »
Jiageng Mao · Niu Minzhe · ChenHan Jiang · hanxue liang · Jingheng Chen · Xiaodan Liang · Yamin Li · Chaoqiang Ye · Wei Zhang · Zhenguo Li · Jie Yu · Hang Xu · Chunjing XU -
2021 Spotlight: iFlow: Numerically Invertible Flows for Efficient Lossless Compression via a Uniform Coder »
Shifeng Zhang · Ning Kang · Tom Ryder · Zhenguo Li -
2021 : SODA10M: A Large-Scale 2D Self/Semi-Supervised Object Detection Dataset for Autonomous Driving »
Jianhua Han · Xiwen Liang · Hang Xu · Kai Chen · Lanqing Hong · Jiageng Mao · Chaoqiang Ye · Wei Zhang · Zhenguo Li · Xiaodan Liang · Chunjing XU -
2021 : How Well Does Self-Supervised Pre-Training Perform with Streaming ImageNet? »
Dapeng Hu · Shipeng Yan · Qizhengqiu Lu · Lanqing Hong · Hailin Hu · Yifan Zhang · Zhenguo Li · Jiashi Feng -
2022 Poster: CAGroup3D: Class-Aware Grouping for 3D Object Detection on Point Clouds »
Haiyang Wang · Lihe Ding · Shaocong Dong · Shaoshuai Shi · Aoxue Li · Jianan Li · Zhenguo Li · Liwei Wang -
2023 Poster: DiffComplete: Diffusion-based Generative 3D Shape Completion »
Ruihang Chu · Enze Xie · Shentong Mo · Zhenguo Li · Matthias Niessner · Chi-Wing Fu · Jiaya Jia -
2023 Poster: SA-Solver: Stochastic Adams Solver for Fast Sampling of Diffusion Models »
Shuchen Xue · Mingyang Yi · Weijian Luo · Shifeng Zhang · Jiacheng Sun · Zhenguo Li · Zhi-Ming Ma -
2023 Poster: XAGen: 3D Expressive Human Avatars Generation »
Eric Z. XU · Jianfeng Zhang · Jun Hao Liew · Jiashi Feng · Mike Zheng Shou -
2023 Poster: DiT-3D: Exploring Plain Diffusion Transformers for 3D Shape Generation »
Shentong Mo · Enze Xie · Ruihang Chu · Lanqing Hong · Matthias Niessner · Zhenguo Li -
2023 Poster: Diff-Instruct: A Universal Approach for Transferring Knowledge From Pre-trained Diffusion Models »
Weijian Luo · Tianyang Hu · Shifeng Zhang · Jiacheng Sun · Zhenguo Li · Zhihua Zhang -
2023 Poster: Expanding Small-Scale Datasets with Guided Imagination »
Yifan Zhang · Daquan Zhou · Bryan Hooi · Kai Wang · Jiashi Feng -
2023 Poster: Complexity Matters: Rethinking the Latent Space for Generative Modeling »
Tianyang Hu · Fei Chen · Haonan Wang · Jiawei Li · Wenjia Wang · Jiacheng Sun · Zhenguo Li -
2023 Poster: T2I-CompBench: A Comprehensive Benchmark for Open-world Compositional Text-to-image Generation »
Kaiyi Huang · Kaiyue Sun · Enze Xie · Zhenguo Li · Xihui Liu -
2022 Spotlight: Scaling & Shifting Your Features: A New Baseline for Efficient Model Tuning »
Dongze Lian · Daquan Zhou · Jiashi Feng · Xinchao Wang -
2022 Spotlight: Lightning Talks 6A-1 »
Ziyi Wang · Nian Liu · Yaming Yang · Qilong Wang · Yuanxin Liu · Zongxin Yang · Yizhao Gao · Yanchen Deng · Dongze Lian · Nanyi Fei · Ziyu Guan · Xiao Wang · Shufeng Kong · Xumin Yu · Daquan Zhou · Yi Yang · Fandong Meng · Mingze Gao · Caihua Liu · Yongming Rao · Zheng Lin · Haoyu Lu · Zhe Wang · Jiashi Feng · Zhaolin Zhang · Deyu Bo · Xinchao Wang · Chuan Shi · Jiangnan Li · Jiangtao Xie · Jie Zhou · Zhiwu Lu · Wei Zhao · Bo An · Jiwen Lu · Peihua Li · Jian Pei · Hao Jiang · Cai Xu · Peng Fu · Qinghua Hu · Yijie Li · Weigang Lu · Yanan Cao · Jianbin Huang · Weiping Wang · Zhao Cao · Jie Zhou -
2022 Spotlight: Lightning Talks 2B-3 »
Jie-Jing Shao · Jiangmeng Li · Jiashuo Liu · Zongbo Han · Tianyang Hu · Jiayun Wu · Wenwen Qiang · Jun WANG · Zhipeng Liang · Lan-Zhe Guo · Wenjia Wang · Yanan Zhang · Xiao-wen Yang · Fan Yang · Bo Li · Wenyi Mo · Zhenguo Li · Liu Liu · Peng Cui · Yu-Feng Li · Changwen Zheng · Lanqing Li · Yatao Bian · Bing Su · Hui Xiong · Peilin Zhao · Bingzhe Wu · Changqing Zhang · Jianhua Yao -
2022 Spotlight: Understanding Square Loss in Training Overparametrized Neural Network Classifiers »
Tianyang Hu · Jun WANG · Wenjia Wang · Zhenguo Li -
2022 Poster: DetCLIP: Dictionary-Enriched Visual-Concept Paralleled Pre-training for Open-world Detection »
Lewei Yao · Jianhua Han · Youpeng Wen · Xiaodan Liang · Dan Xu · Wei Zhang · Zhenguo Li · Chunjing XU · Hang Xu -
2022 Poster: ZooD: Exploiting Model Zoo for Out-of-Distribution Generalization »
Qishi Dong · Awais Muhammad · Fengwei Zhou · Chuanlong Xie · Tianyang Hu · Yongxin Yang · Sung-Ho Bae · Zhenguo Li -
2022 Poster: Scaling & Shifting Your Features: A New Baseline for Efficient Model Tuning »
Dongze Lian · Daquan Zhou · Jiashi Feng · Xinchao Wang -
2022 Poster: Understanding Square Loss in Training Overparametrized Neural Network Classifiers »
Tianyang Hu · Jun WANG · Wenjia Wang · Zhenguo Li -
2022 Poster: Self-Supervised Aggregation of Diverse Experts for Test-Agnostic Long-Tailed Recognition »
Yifan Zhang · Bryan Hooi · Lanqing Hong · Jiashi Feng -
2022 Poster: Sharpness-Aware Training for Free »
JIAWEI DU · Daquan Zhou · Jiashi Feng · Vincent Tan · Joey Tianyi Zhou -
2021 : Layer-Parallel Training of Residual Networks with Auxiliary Variables »
Qi Sun · Hexin Dong · Zewei Chen · WeiZhen Dian · Jiacheng Sun · Yitong Sun · Zhenguo Li · Bin Dong -
2021 : Contributed Talk 3: Architecture Personalization in Resource-constrained Federated Learning »
Mi Luo · Fei Chen · Zhenguo Li · Jiashi Feng -
2021 Poster: No Fear of Heterogeneity: Classifier Calibration for Federated Learning with Non-IID Data »
Mi Luo · Fei Chen · Dapeng Hu · Yifan Zhang · Jian Liang · Jiashi Feng -
2021 Poster: iFlow: Numerically Invertible Flows for Efficient Lossless Compression via a Uniform Coder »
Shifeng Zhang · Ning Kang · Tom Ryder · Zhenguo Li -
2021 Poster: On Effective Scheduling of Model-based Reinforcement Learning »
Hang Lai · Jian Shen · Weinan Zhang · Yimin Huang · Xing Zhang · Ruiming Tang · Yong Yu · Zhenguo Li -
2021 Poster: OSOA: One-Shot Online Adaptation of Deep Generative Models for Lossless Compression »
Chen Zhang · Shifeng Zhang · Fabio Maria Carlucci · Zhenguo Li -
2021 Poster: MixACM: Mixup-Based Robustness Transfer via Distillation of Activated Channel Maps »
Awais Muhammad · Fengwei Zhou · Chuanlong Xie · Jiawei Li · Sung-Ho Bae · Zhenguo Li -
2021 Poster: Towards a Theoretical Framework of Out-of-Distribution Generalization »
Haotian Ye · Chuanlong Xie · Tianle Cai · Ruichen Li · Zhenguo Li · Liwei Wang -
2020 Poster: Bridging the Gap between Sample-based and One-shot Neural Architecture Search with BONAS »
Han Shi · Renjie Pi · Hang Xu · Zhenguo Li · James Kwok · Tong Zhang -
2020 Poster: Locally Differentially Private (Contextual) Bandits Learning »
Kai Zheng · Tianle Cai · Weiran Huang · Zhenguo Li · Liwei Wang