Timezone: »
A key aspect of human intelligence is their ability to convey their knowledge to others in succinct forms. However, despite their predictive power, current machine learning models are largely blackboxes, making it difficult for humans to extract useful insights. Focusing on sequential decision-making, we design a novel machine learning algorithm that conveys its insights to humans in the form of interpretable "tips". Our algorithm selects the tip that best bridges the gap in performance between human users and the optimal policy. We evaluate our approach through a series of randomized controlled user studies where participants manage a virtual kitchen. Our experiments show that the tips generated by our algorithm can significantly improve human performance relative to intuitive baselines. In addition, we discuss a number of empirical insights that can help inform the design of algorithms intended for human-AI interfaces. For instance, we find evidence that participants do not simply blindly follow our tips; instead, they combine them with their own experience to discover additional strategies for improving performance.
Author Information
Hamsa Bastani (Wharton School, University of Pennsylvania)
My research focuses on developing novel machine learning algorithms for data-driven decision-making, with applications to healthcare operations, revenue management, and social good. Recently, I've been working on the design and application of transfer learning algorithms, e.g., for predictive analytics with small data, dynamic pricing across related products, and speeding up clinical trials with surrogate outcomes. I am also interested in algorithmic accountability and using big data to combat social and environmental harm.
Osbert Bastani (University of Pennsylvania)
Park Sinchaisri (University of California, Berkeley)
More from the Same Authors
-
2020 : Paper 50: Diverse Sampling for Flow-Based Trajectory Forecasting »
Jason Ma · Jeevana Priya Inala · Dinesh Jayaraman · Osbert Bastani -
2021 Spotlight: Program Synthesis Guided Reinforcement Learning for Partially Observed Environments »
Yichen Yang · Jeevana Priya Inala · Osbert Bastani · Yewen Pu · Armando Solar-Lezama · Martin Rinard -
2021 : Conservative and Adaptive Penalty for Model-Based Safe Reinforcement Learning »
Jason Ma · Andrew Shen · Osbert Bastani · Dinesh Jayaraman -
2021 : Specification-Guided Learning of Nash Equilibria with High Social Welfare »
Kishor Jothimurugan · Suguman Bansal · Osbert Bastani · Rajeev Alur -
2021 : PAC Synthesis of Machine Learning Programs »
Osbert Bastani -
2021 : Synthesizing Video Trajectory Queries »
Stephen Mell · Favyen Bastani · Stephan Zdancewic · Osbert Bastani -
2021 : Conservative and Adaptive Penalty for Model-Based Safe Reinforcement Learning »
Jason Ma · Andrew Shen · Osbert Bastani · Dinesh Jayaraman -
2021 : Conservative and Adaptive Penalty for Model-Based Safe Reinforcement Learning »
Jason Ma · Andrew Shen · Osbert Bastani · Dinesh Jayaraman -
2022 : Bandits for Online Calibration: An Application to Content Moderation on Social Media Platforms »
Vashist Avadhanula · Omar Abdul Baki · Hamsa Bastani · Osbert Bastani · Caner Gocmen · Daniel Haimovich · Darren Hwang · Dmytro Karamshuk · Thomas Leeper · Jiayuan Ma · Gregory macnamara · Jake Mullet · Christopher Palow · Sung Park · Varun S Rajagopal · Kevin Schaeffer · Parikshit Shah · Deeksha Sinha · Nicolas Stier-Moses · Ben Xu -
2022 : Bandits for Online Calibration: An Application to Content Moderation on Social Media Platforms »
Vashist Avadhanula · Omar Abdul Baki · Hamsa Bastani · Osbert Bastani · Caner Gocmen · Daniel Haimovich · Darren Hwang · Dmytro Karamshuk · Thomas Leeper · Jiayuan Ma · Gregory macnamara · Jake Mullet · Christopher Palow · Sung Park · Varun S Rajagopal · Kevin Schaeffer · Parikshit Shah · Deeksha Sinha · Nicolas Stier-Moses · Ben Xu -
2022 : Towards Universal Visual Reward and Representation via Value-Implicit Pre-Training »
Jason Ma · Shagun Sodhani · Dinesh Jayaraman · Osbert Bastani · Vikash Kumar · Amy Zhang -
2022 : VIP: Towards Universal Visual Reward and Representation via Value-Implicit Pre-Training »
Jason Ma · Shagun Sodhani · Dinesh Jayaraman · Osbert Bastani · Vikash Kumar · Amy Zhang -
2022 : Towards Universal Visual Reward and Representation via Value-Implicit Pre-Training »
Jason Ma · Shagun Sodhani · Dinesh Jayaraman · Osbert Bastani · Vikash Kumar · Amy Zhang -
2022 : Bandits for Online Calibration: An Application to Content Moderation on Social Media Platforms »
Vashist Avadhanula · Omar Abdul Baki · Hamsa Bastani · Osbert Bastani · Caner Gocmen · Daniel Haimovich · Darren Hwang · Dmytro Karamshuk · Thomas Leeper · Jiayuan Ma · Gregory macnamara · Jake Mullet · Christopher Palow · Sung Park · Varun S Rajagopal · Kevin Schaeffer · Parikshit Shah · Deeksha Sinha · Nicolas Stier-Moses · Ben Xu -
2022 : Policy Aware Model Learning via Transition Occupancy Matching »
Jason Ma · Kausik Sivakumar · Osbert Bastani · Dinesh Jayaraman -
2022 : Robust Option Learning for Adversarial Generalization »
Kishor Jothimurugan · Steve Hsu · Osbert Bastani · Rajeev Alur -
2022 : VIP: Towards Universal Visual Reward and Representation via Value-Implicit Pre-Training »
Jason Ma · Shagun Sodhani · Dinesh Jayaraman · Osbert Bastani · Vikash Kumar · Amy Zhang -
2023 : Universal Visual Decomposer: Long-Horizon Manipulation Made Easy »
Zichen "Charles" Zhang · Yunshuang Li · Osbert Bastani · Abhishek Gupta · Dinesh Jayaraman · Jason Ma · Luca Weihs -
2023 : Eureka: Human-Level Reward Design via Coding Large Language Models »
Jason Ma · William Liang · Guanzhi Wang · De-An Huang · Osbert Bastani · Dinesh Jayaraman · Yuke Zhu · Linxi Fan · Animashree Anandkumar -
2023 : Universal Visual Decomposer: Long-Horizon Manipulation Made Easy »
Zichen "Charles" Zhang · Yunshuang Li · Osbert Bastani · Abhishek Gupta · Dinesh Jayaraman · Jason Ma · Luca Weihs -
2023 : Universal Visual Decomposer: Long-Horizon Manipulation Made Easy »
Zichen "Charles" Zhang · Yunshuang Li · Osbert Bastani · Abhishek Gupta · Dinesh Jayaraman · Jason Ma · Luca Weihs -
2023 : Eureka: Human-Level Reward Design via Coding Large Language Models »
Jason Ma · William Liang · Guanzhi Wang · De-An Huang · Osbert Bastani · Dinesh Jayaraman · Yuke Zhu · Linxi Fan · Animashree Anandkumar -
2023 : Eureka: Human-Level Reward Design via Coding Large Language Models »
Jason Ma · William Liang · Guanzhi Wang · De-An Huang · Osbert Bastani · Dinesh Jayaraman · Yuke Zhu · Linxi Fan · Animashree Anandkumar -
2022 : Towards Universal Visual Reward and Representation via Value-Implicit Pre-Training »
Jason Ma · Shagun Sodhani · Dinesh Jayaraman · Osbert Bastani · Vikash Kumar · Amy Zhang -
2022 : Bandits for Online Calibration: An Application to Content Moderation on Social Media Platforms »
Vashist Avadhanula · Omar Abdul Baki · Hamsa Bastani · Osbert Bastani · Caner Gocmen · Daniel Haimovich · Darren Hwang · Dmytro Karamshuk · Thomas Leeper · Jiayuan Ma · Gregory macnamara · Jake Mullet · Christopher Palow · Sung Park · Varun S Rajagopal · Kevin Schaeffer · Parikshit Shah · Deeksha Sinha · Nicolas Stier-Moses · Ben Xu -
2022 Poster: PAC Prediction Sets for Meta-Learning »
Sangdon Park · Edgar Dobriban · Insup Lee · Osbert Bastani -
2022 Poster: Offline Goal-Conditioned Reinforcement Learning via $f$-Advantage Regression »
Jason Ma · Jason Yan · Dinesh Jayaraman · Osbert Bastani -
2022 Poster: Neurosymbolic Deep Generative Models for Sequence Data with Relational Constraints »
Halley Young · Maxwell Du · Osbert Bastani -
2022 Poster: Regret Bounds for Risk-Sensitive Reinforcement Learning »
Osbert Bastani · Jason Ma · Estelle Shen · Wanqiao Xu -
2022 Poster: Practical Adversarial Multivalid Conformal Prediction »
Osbert Bastani · Varun Gupta · Christopher Jung · Georgy Noarov · Ramya Ramalingam · Aaron Roth -
2021 Poster: Conservative Offline Distributional Reinforcement Learning »
Jason Ma · Dinesh Jayaraman · Osbert Bastani -
2021 Poster: Compositional Reinforcement Learning from Logical Specifications »
Kishor Jothimurugan · Suguman Bansal · Osbert Bastani · Rajeev Alur -
2021 Poster: Program Synthesis Guided Reinforcement Learning for Partially Observed Environments »
Yichen Yang · Jeevana Priya Inala · Osbert Bastani · Yewen Pu · Armando Solar-Lezama · Martin Rinard -
2021 Poster: Learning Models for Actionable Recourse »
Alexis Ross · Himabindu Lakkaraju · Osbert Bastani -
2020 : Invited Talk 2: Country-Scale Bandit Implementation for Targeted COVID-19 Testing »
Hamsa Bastani -
2020 Poster: Neurosymbolic Transformers for Multi-Agent Communication »
Jeevana Priya Inala · Yichen Yang · James Paulos · Yewen Pu · Osbert Bastani · Vijay Kumar · Martin Rinard · Armando Solar-Lezama -
2019 Poster: A Composable Specification Language for Reinforcement Learning Tasks »
Kishor Jothimurugan · Rajeev Alur · Osbert Bastani -
2018 Poster: Verifiable Reinforcement Learning via Policy Extraction »
Osbert Bastani · Yewen Pu · Armando Solar-Lezama