Timezone: »
Cryo-electron microscopy (cryo-EM) has revolutionized experimental protein structure determination. Despite advances in high resolution reconstruction, a majority of cryo-EM experiments provide either a single state of the studied macromolecule, or a relatively small number of its conformations. This reduces the effectiveness of the technique for proteins with flexible regions, which are known to play a key role in protein function. Recent methods for capturing conformational heterogeneity in cryo-EM data model the volume space, making recovery of continuous atomic structures challenging. Here we present a fully deep-learning-based approach using variational auto-encoders (VAEs) to recover a continuous distribution of atomic protein structures and poses directly from picked particle images and demonstrate its efficacy on realistic simulated data. We hope that methods built on this work will allow incorporation of stronger prior information about protein structure and enable better understanding of non-rigid protein structures.
Author Information
Dan Rosenbaum (University of Haifa)
Marta Garnelo (DeepMind)
Michal Zielinski (DeepMind)
Charles Beattie (DeepMind)
Ellen Clancy (DeepMind)
Andrea Huber (DeepMind)
Pushmeet Kohli (DeepMind)
Andrew Senior (DeepMind)
John Jumper (DeepMind)
Carl Doersch (DeepMind)
S. M. Ali Eslami (DeepMind)
Olaf Ronneberger (DeepMind)
Jonas Adler (DeepMind)

Senior Research Scientist at DM, working in the science team on AlphaFold and more.
Related Events (a corresponding poster, oral, or spotlight)
-
2021 : Inferring a Continuous Distribution of Atom Coordinates from Cryo-EM Images using VAEs »
Mon. Dec 13th 03:30 -- 03:40 PM Room
More from the Same Authors
-
2023 Affinity Workshop: Muslims in ML »
Sanae Lotfi · Hammaad Adam · Marzyeh Ghassemi · Shakir Mohamed · S. M. Ali Eslami -
2022 : Panel »
Jeevana Priya Inala · Pushmeet Kohli · Ann Kennedy · Sriram Rajamani · Yisong Yue -
2022 Poster: TAP-Vid: A Benchmark for Tracking Any Point in a Video »
Carl Doersch · Ankush Gupta · Larisa Markeeva · Adria Recasens · Lucas Smaira · Yusuf Aytar · Joao Carreira · Andrew Zisserman · Yi Yang -
2021 : Keynote 1: John Jumper: Highly accurate protein structure prediction with AlphaFold »
John Jumper -
2021 : Live Panel »
Max Welling · Bharath Ramsundar · Irina Rish · Karianne J Bergen · Pushmeet Kohli -
2021 Poster: Multimodal Few-Shot Learning with Frozen Language Models »
Maria Tsimpoukelli · Jacob L Menick · Serkan Cabi · S. M. Ali Eslami · Oriol Vinyals · Felix Hill -
2020 Poster: Bootstrap Your Own Latent - A New Approach to Self-Supervised Learning »
Jean-Bastien Grill · Florian Strub · Florent Altché · Corentin Tallec · Pierre Richemond · Elena Buchatskaya · Carl Doersch · Bernardo Avila Pires · Daniel (Zhaohan) Guo · Mohammad Gheshlaghi Azar · Bilal Piot · koray kavukcuoglu · Remi Munos · Michal Valko -
2020 Poster: CrossTransformers: spatially-aware few-shot transfer »
Carl Doersch · Ankush Gupta · Andrew Zisserman -
2020 Oral: Bootstrap Your Own Latent - A New Approach to Self-Supervised Learning »
Jean-Bastien Grill · Florian Strub · Florent Altché · Corentin Tallec · Pierre Richemond · Elena Buchatskaya · Carl Doersch · Bernardo Avila Pires · Daniel (Zhaohan) Guo · Mohammad Gheshlaghi Azar · Bilal Piot · koray kavukcuoglu · Remi Munos · Michal Valko -
2020 Tutorial: (Track3) Designing Learning Dynamics Q&A »
Marta Garnelo · David Balduzzi · Wojciech Czarnecki -
2020 Poster: Training Generative Adversarial Networks by Solving Ordinary Differential Equations »
Chongli Qin · Yan Wu · Jost Tobias Springenberg · Andy Brock · Jeff Donahue · Timothy Lillicrap · Pushmeet Kohli -
2020 Poster: Enabling certification of verification-agnostic networks via memory-efficient semidefinite programming »
Sumanth Dathathri · Krishnamurthy Dvijotham · Alexey Kurakin · Aditi Raghunathan · Jonathan Uesato · Rudy Bunel · Shreya Shankar · Jacob Steinhardt · Ian Goodfellow · Percy Liang · Pushmeet Kohli -
2020 Spotlight: Training Generative Adversarial Networks by Solving Ordinary Differential Equations »
Chongli Qin · Yan Wu · Jost Tobias Springenberg · Andy Brock · Jeff Donahue · Timothy Lillicrap · Pushmeet Kohli -
2020 Poster: The Autoencoding Variational Autoencoder »
Taylan Cemgil · Sumedh Ghaisas · Krishnamurthy Dvijotham · Sven Gowal · Pushmeet Kohli -
2020 Spotlight: The Autoencoding Variational Autoencoder »
Taylan Cemgil · Sumedh Ghaisas · Krishnamurthy Dvijotham · Sven Gowal · Pushmeet Kohli -
2020 Tutorial: (Track3) Designing Learning Dynamics »
Marta Garnelo · David Balduzzi · Wojciech Czarnecki -
2019 : Carl Doersch, Raquel Urtasun, Sanja Fidler moderated by Natalia Neverova »
Raquel Urtasun · Sanja Fidler · Natalia Neverova · Ilija Radosavovic · Carl Doersch -
2019 : Carl Doersch - On Self-Supervised Learning for Vision »
Carl Doersch -
2019 : Closing remarks »
Dan Rosenbaum · Marta Garnelo · Peter Battaglia · Kelsey Allen · Ilker Yildirim -
2019 : Opening Remarks »
Dan Rosenbaum · Marta Garnelo · Peter Battaglia · Kelsey Allen · Ilker Yildirim -
2019 Workshop: Perception as generative reasoning: structure, causality, probability »
Dan Rosenbaum · Marta Garnelo · Peter Battaglia · Kelsey Allen · Ilker Yildirim -
2019 Poster: Learning Transferable Graph Exploration »
Hanjun Dai · Yujia Li · Chenglong Wang · Rishabh Singh · Po-Sen Huang · Pushmeet Kohli -
2019 Poster: Are Labels Required for Improving Adversarial Robustness? »
Jean-Baptiste Alayrac · Jonathan Uesato · Po-Sen Huang · Alhussein Fawzi · Robert Stanforth · Pushmeet Kohli -
2019 Poster: Adversarial Robustness through Local Linearization »
Chongli Qin · James Martens · Sven Gowal · Dilip Krishnan · Krishnamurthy Dvijotham · Alhussein Fawzi · Soham De · Robert Stanforth · Pushmeet Kohli -
2019 Poster: Sim2real transfer learning for 3D human pose estimation: motion to the rescue »
Carl Doersch · Andrew Zisserman -
2018 : The U-net does its job – so what next? »
Olaf Ronneberger -
2018 : Poster Session 1 + Coffee »
Tom Van de Wiele · Rui Zhao · J. Fernando Hernandez-Garcia · Fabio Pardo · Xian Yeow Lee · Xiaolin Andy Li · Marcin Andrychowicz · Jie Tang · Suraj Nair · Juhyeon Lee · Cédric Colas · S. M. Ali Eslami · Yen-Chen Wu · Stephen McAleer · Ryan Julian · Yang Xue · Matthia Sabatelli · Pranav Shyam · Alexandros Kalousis · Giovanni Montana · Emanuele Pesce · Felix Leibfried · Zhanpeng He · Chunxiao Liu · Yanjun Li · Yoshihide Sawada · Alexander Pashevich · Tejas Kulkarni · Keiran Paster · Luca Rigazio · Quan Vuong · Hyunggon Park · Minhae Kwon · Rivindu Weerasekera · Shamane Siriwardhanaa · Rui Wang · Ozsel Kilinc · Keith Ross · Yizhou Wang · Simon Schmitt · Thomas Anthony · Evan Cater · Forest Agostinelli · Tegg Sung · Shirou Maruyama · Alexander Shmakov · Devin Schwab · Mohammad Firouzi · Glen Berseth · Denis Osipychev · Jesse Farebrother · Jianlan Luo · William Agnew · Peter Vrancx · Jonathan Heek · Catalin Ionescu · Haiyan Yin · Megumi Miyashita · Nathan Jay · Noga H. Rotman · Sam Leroux · Shaileshh Bojja Venkatakrishnan · Henri Schmidt · Jack Terwilliger · Ishan Durugkar · Jonathan Sauder · David Kas · Arash Tavakoli · Alain-Sam Cohen · Philip Bontrager · Adam Lerer · Thomas Paine · Ahmed Khalifa · Ruben Rodriguez · Avi Singh · Yiming Zhang -
2018 Poster: A Unified View of Piecewise Linear Neural Network Verification »
Rudy Bunel · Ilker Turkaslan · Philip Torr · Pushmeet Kohli · Pawan K Mudigonda -
2018 Poster: A Probabilistic U-Net for Segmentation of Ambiguous Images »
Simon Kohl · Bernardino Romera-Paredes · Clemens Meyer · Jeffrey De Fauw · Joseph R. Ledsam · Klaus Maier-Hein · S. M. Ali Eslami · Danilo Jimenez Rezende · Olaf Ronneberger -
2018 Spotlight: A Probabilistic U-Net for Segmentation of Ambiguous Images »
Simon Kohl · Bernardino Romera-Paredes · Clemens Meyer · Jeffrey De Fauw · Joseph R. Ledsam · Klaus Maier-Hein · S. M. Ali Eslami · Danilo Jimenez Rezende · Olaf Ronneberger -
2018 Poster: Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language Understanding »
Kexin Yi · Jiajun Wu · Chuang Gan · Antonio Torralba · Pushmeet Kohli · Josh Tenenbaum -
2018 Spotlight: Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language Understanding »
Kexin Yi · Jiajun Wu · Chuang Gan · Antonio Torralba · Pushmeet Kohli · Josh Tenenbaum -
2017 Workshop: Machine Learning for Creativity and Design »
Douglas Eck · David Ha · S. M. Ali Eslami · Sander Dieleman · Rebecca Fiebrink · Luba Elliott -
2017 Poster: A multi-agent reinforcement learning model of common-pool resource appropriation »
Julien Pérolat · Joel Leibo · Vinicius Zambaldi · Charles Beattie · Karl Tuyls · Thore Graepel -
2016 Poster: Unsupervised Learning of 3D Structure from Images »
Danilo Jimenez Rezende · S. M. Ali Eslami · Shakir Mohamed · Peter Battaglia · Max Jaderberg · Nicolas Heess -
2016 Poster: Scaling Memory-Augmented Neural Networks with Sparse Reads and Writes »
Jack Rae · Jonathan J Hunt · Ivo Danihelka · Tim Harley · Andrew Senior · Gregory Wayne · Alex Graves · Timothy Lillicrap -
2016 Poster: Attend, Infer, Repeat: Fast Scene Understanding with Generative Models »
S. M. Ali Eslami · Nicolas Heess · Theophane Weber · Yuval Tassa · David Szepesvari · koray kavukcuoglu · Geoffrey E Hinton -
2015 Workshop: Black box learning and inference »
Josh Tenenbaum · Jan-Willem van de Meent · Tejas Kulkarni · S. M. Ali Eslami · Brooks Paige · Frank Wood · Zoubin Ghahramani -
2013 Poster: Mid-level Visual Element Discovery as Discriminative Mode Seeking »
Carl Doersch · Abhinav Gupta · Alexei A Efros -
2012 Poster: Large Scale Distributed Deep Networks »
Jeff Dean · Greg Corrado · Rajat Monga · Kai Chen · Matthieu Devin · Quoc V Le · Mark Mao · Marc'Aurelio Ranzato · Andrew Senior · Paul Tucker · Ke Yang · Andrew Y Ng