Timezone: »
Protein sequences follow a discrete alphabet rendering gradient-based techniques a poor choice for optimization-driven protein design. Contemporary approaches instead perform optimization in a continuous latent representation, but unfortunately the representation metric is generally a poor measure similarity between the represented proteins. This make (global) Bayesian optimization over such latent representations inefficient as commonly applied covariance functions are strongly dependent on the representation metric. Here we argue in favor of using the Jensen-Shannon divergence between the represented protein sequences to define a covariance function over the latent representation. Our exploratory experiments indicate that this kernel is worth further investigation.
Author Information
Yevgen Zainchkovskyy (Technical University of Denmark)
Simon Bartels (Copenhagen University)
Søren Hauberg (Technical University of Denmark)
Jes Frellsen (Technical University of Denmark)
Wouter Boomsma (University of Copenhagen)
More from the Same Authors
-
2021 Meetup: Copenhagen, Denmark »
Søren Hauberg -
2022 : Probabilistic thermal stability prediction through sparsity promoting transformer representation »
Yevgen Zainchkovskyy · Jesper Ferkinghoff-Borg · Anja Bennett · Thomas Egebjerg · Nikolai Lorenzen · Per Greisen · Søren Hauberg · Carsten Stahlhut -
2022 : SolarDK: A high-resolution urban solar panel image classification and localization dataset »
Maxim Khomiakov · Julius Holbech Radzikowski · Carl Schmidt · Mathias Bonde Sørensen · Mads Andersen · Michael Andersen · Jes Frellsen -
2022 : Optimal Latent Transport »
Hrittik Roy · Søren Hauberg -
2022 : Identifying latent distances with Finslerian geometry »
Alison Pouplin · David Eklund · Carl Henrik Ek · Søren Hauberg -
2022 Workshop: Learning Meaningful Representations of Life »
Elizabeth Wood · Adji Bousso Dieng · Aleksandrina Goeva · Alex X Lu · Anshul Kundaje · Chang Liu · Debora Marks · Ed Boyden · Eli N Weinstein · Lorin Crawford · Mor Nitzan · Rebecca Boiarsky · Romain Lopez · Tamara Broderick · Ray Jones · Wouter Boomsma · Yixin Wang · Stephen Ra -
2022 Poster: Revisiting Active Sets for Gaussian Process Decoders »
Pablo Moreno-Muñoz · Cilie Feldager · Søren Hauberg -
2022 Poster: Laplacian Autoencoders for Learning Stochastic Representations »
Marco Miani · Frederik Warburg · Pablo Moreno-Muñoz · Nicki Skafte · Søren Hauberg -
2021 Workshop: Learning Meaningful Representations of Life (LMRL) »
Elizabeth Wood · Adji Bousso Dieng · Aleksandrina Goeva · Anshul Kundaje · Barbara Engelhardt · Chang Liu · David Van Valen · Debora Marks · Edward Boyden · Eli N Weinstein · Lorin Crawford · Mor Nitzan · Romain Lopez · Tamara Broderick · Ray Jones · Wouter Boomsma · Yixin Wang -
2021 Workshop: Machine Learning in Structural Biology »
Ellen Zhong · Raphael Townshend · Stephan Eismann · Namrata Anand · Roshan Rao · John Ingraham · Wouter Boomsma · Sergey Ovchinnikov · Bonnie Berger -
2021 Poster: Bounds all around: training energy-based models with bidirectional bounds »
Cong Geng · Jia Wang · Zhiyong Gao · Jes Frellsen · Søren Hauberg -
2020 : Frank Noe Intro »
Wouter Boomsma -
2020 Workshop: Machine Learning for Structural Biology »
Raphael Townshend · Stephan Eismann · Ron Dror · Ellen Zhong · Namrata Anand · John Ingraham · Wouter Boomsma · Sergey Ovchinnikov · Roshan Rao · Per Greisen · Rachel Kolodny · Bonnie Berger -
2020 : Isometric Gaussian Process Latent Variable Model »
Martin Jørgensen · Søren Hauberg -
2020 : Invited Talk 3: Reparametrization invariance in representation learning »
Søren Hauberg -
2020 Workshop: Learning Meaningful Representations of Life (LMRL.org) »
Elizabeth Wood · Debora Marks · Ray Jones · Adji Bousso Dieng · Alan Aspuru-Guzik · Anshul Kundaje · Barbara Engelhardt · Chang Liu · Edward Boyden · Kresten Lindorff-Larsen · Mor Nitzan · Smita Krishnaswamy · Wouter Boomsma · Yixin Wang · David Van Valen · Orr Ashenberg -
2019 Poster: Reliable training and estimation of variance networks »
Nicki Skafte · Martin Jørgensen · Søren Hauberg -
2019 Poster: Explicit Disentanglement of Appearance and Perspective in Generative Models »
Nicki Skafte · Søren Hauberg -
2018 Poster: 3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data »
Maurice Weiler · Wouter Boomsma · Mario Geiger · Max Welling · Taco Cohen -
2017 Spotlight: Spherical convolutions and their application in molecular modelling »
Wouter Boomsma · Jes Frellsen -
2017 Poster: Spherical convolutions and their application in molecular modelling »
Wouter Boomsma · Jes Frellsen -
2016 Poster: A Locally Adaptive Normal Distribution »
Georgios Arvanitidis · Lars K Hansen · Søren Hauberg