Timezone: »
In this paper, we study the statistical limits of deep learning techniques for solving elliptic partial differential equations (PDEs) from random samples using the Deep Ritz Method (DRM) and Physics-Informed Neural Networks (PINNs). To simplify the problem, we focus on a prototype elliptic PDE: the Schr\"odinger equation on a hypercube with zero Dirichlet boundary condition, which is applied in quantum-mechanical systems. We establish upper and lower bounds for both methods, which improve upon concurrently developed upper bounds for this problem via a fast rate generalization bound. We discover that the current Deep Ritz Method is sub-optimal and propose a modified version of it. We also prove that PINN and the modified version of DRM can achieve minimax optimal bounds over Sobolev spaces. Empirically, following recent work which has shown that the deep model accuracy will improve with growing training sets according to a power law, we supply computational experiments to show similar-behavior of dimension dependent power law for deep PDE solvers.
Author Information
Yiping Lu (Stanford University)
Haoxuan Chen (California Institute of Technology)
Jianfeng Lu (Duke University)
Lexing Ying (Stanford University)
Jose Blanchet (Stanford University)
More from the Same Authors
-
2021 Spotlight: On the Representation of Solutions to Elliptic PDEs in Barron Spaces »
Ziang Chen · Jianfeng Lu · Yulong Lu -
2021 Spotlight: On Linear Stability of SGD and Input-Smoothness of Neural Networks »
Chao Ma · Lexing Ying -
2022 : Minimax Optimal Kernel Operator Learning via Multilevel Training »
Jikai Jin · Yiping Lu · Jose Blanchet · Lexing Ying -
2022 : Convergence of score-based generative modeling for general data distributions »
Holden Lee · Jianfeng Lu · Yixin Tan -
2022 : Synthetic Principle Component Design: Fast Covariate Balancing with Synthetic Controls »
Yiping Lu · Jiajin Li · Lexing Ying · Jose Blanchet -
2023 Poster: Deep Equilibrium Based Neural Operators for Steady-State PDEs »
Tanya Marwah · Ashwini Pokle · J. Zico Kolter · Zachary Lipton · Jianfeng Lu · Andrej Risteski -
2023 Poster: Double Pessimism is Provably Efficient for Distributionally Robust Offline Reinforcement Learning: Generic Algorithm and Robust Partial Coverage »
Jose Blanchet · Miao Lu · Tong Zhang · Han Zhong -
2023 Poster: When can Regression-Adjusted Control Variate Help? Rare Events, Sobolev Embedding and Minimax Optimality »
Jose Blanchet · Haoxuan Chen · Yiping Lu · Lexing Ying -
2023 Poster: The probability flow ODE is provably fast »
Sitan Chen · Sinho Chewi · Holden Lee · Yuanzhi Li · Jianfeng Lu · Adil Salim -
2023 Poster: Payoff-based Learning with Matrix Multiplicative Weights in Quantum Games »
Kyriakos Lotidis · Panayotis Mertikopoulos · Nicholas Bambos · Jose Blanchet -
2023 Poster: Doubly Smoothed GDA for Constrained Nonconvex-Nonconcave Minimax Optimization »
Taoli Zheng · Linglingzhi Zhu · Anthony Man-Cho So · Jose Blanchet · Jiajin Li -
2022 Poster: Convergence for score-based generative modeling with polynomial complexity »
Holden Lee · Jianfeng Lu · Yixin Tan -
2022 Poster: Sobolev Acceleration and Statistical Optimality for Learning Elliptic Equations via Gradient Descent »
Yiping Lu · Jose Blanchet · Lexing Ying -
2022 Poster: Tikhonov Regularization is Optimal Transport Robust under Martingale Constraints »
Jiajin Li · Sirui Lin · Jose Blanchet · Viet Anh Nguyen -
2021 Poster: On Linear Stability of SGD and Input-Smoothness of Neural Networks »
Chao Ma · Lexing Ying -
2021 Poster: On the Representation of Solutions to Elliptic PDEs in Barron Spaces »
Ziang Chen · Jianfeng Lu · Yulong Lu -
2021 Poster: Adversarial Regression with Doubly Non-negative Weighting Matrices »
Tam Le · Truyen Nguyen · Makoto Yamada · Jose Blanchet · Viet Anh Nguyen -
2021 Poster: Modified Frank Wolfe in Probability Space »
Carson Kent · Jiajin Li · Jose Blanchet · Peter W Glynn -
2020 Poster: Distributionally Robust Parametric Maximum Likelihood Estimation »
Viet Anh Nguyen · Xuhui Zhang · Jose Blanchet · Angelos Georghiou -
2020 Poster: A Universal Approximation Theorem of Deep Neural Networks for Expressing Probability Distributions »
Yulong Lu · Jianfeng Lu -
2020 Poster: Quantifying the Empirical Wasserstein Distance to a Set of Measures: Beating the Curse of Dimensionality »
Nian Si · Jose Blanchet · Soumyadip Ghosh · Mark Squillante -
2020 Spotlight: Quantifying the Empirical Wasserstein Distance to a Set of Measures: Beating the Curse of Dimensionality »
Nian Si · Jose Blanchet · Soumyadip Ghosh · Mark Squillante -
2020 Poster: Distributionally Robust Local Non-parametric Conditional Estimation »
Viet Anh Nguyen · Fan Zhang · Jose Blanchet · Erick Delage · Yinyu Ye -
2019 Poster: Learning in Generalized Linear Contextual Bandits with Stochastic Delays »
Zhengyuan Zhou · Renyuan Xu · Jose Blanchet -
2019 Spotlight: Learning in Generalized Linear Contextual Bandits with Stochastic Delays »
Zhengyuan Zhou · Renyuan Xu · Jose Blanchet -
2019 Poster: Online EXP3 Learning in Adversarial Bandits with Delayed Feedback »
Ilai Bistritz · Zhengyuan Zhou · Xi Chen · Nicholas Bambos · Jose Blanchet -
2019 Poster: Multivariate Distributionally Robust Convex Regression under Absolute Error Loss »
Jose Blanchet · Peter W Glynn · Jun Yan · Zhengqing Zhou -
2019 Poster: Semi-Parametric Dynamic Contextual Pricing »
Virag Shah · Ramesh Johari · Jose Blanchet