Timezone: »
In Norcliffe et al.[13], we discussed and systematically analysed how Neural ODEs (NODEs) can learn higher-order order dynamics. In particular, we focused on second-order dynamic behaviour and analysed Augmented NODEs (ANODEs), showing that they can learn second-order dynamics with only a few augmented dimensions, but are unable to correctly model the velocity (first derivative). In response, we proposed Second Order NODEs (SONODEs), that build on top of ANODEs, but explicitly take into account the second-order physics-based inductive biases. These biases, besides making them more efficient and noise-robust when modelling second-order dynamics, make them more interpretable than ANODEs, therefore more suitable in many real-world scientific modelling applications.
Author Information
Alexander Norcliffe (University of Cambridge)
I'm a PhD student in Machine Learning for Medicine. I am co-supervised by Mihaela Van der Schaar and Pietro Lio in the Cambridge Centre for AI in Medicine.
Cristian Bodnar (University of Cambridge)
Ben Day (University of Cambridge)
Nikola Simidjievski (University of Cambridge)
Pietro Lió (University of Cambridge)
More from the Same Authors
-
2021 : Interpretable Data Analysis for Bench-to-Bedside Research »
Zohreh Shams · Botty Dimanov · Nikola Simidjievski · Helena Andres-Terre · Paul Scherer · Urška Matjašec · Mateja Jamnik · Pietro Lió -
2021 : Structure-aware generation of drug-like molecules »
Pavol Drotar · Arian Jamasb · Ben Day · Catalina Cangea · Pietro Lió -
2021 : 3D Pre-training improves GNNs for Molecular Property Prediction »
Hannes Stärk · Dominique Beaini · Gabriele Corso · Prudencio Tossou · Christian Dallago · Stephan Günnemann · Pietro Lió -
2021 : 3D Pre-training improves GNNs for Molecular Property Prediction »
Hannes Stärk · Gabriele Corso · Christian Dallago · Stephan Günnemann · Pietro Lió -
2021 : Approximate Latent Force Model Inference »
Jacob Moss · Felix Opolka · Pietro Lió -
2022 : Learning Feynman Diagrams using Graph Neural Networks »
Alexander Norcliffe · Harrison Mitchell · Pietro Lió -
2022 : A physics-informed search for metric solutions to Ricci flow, their embeddings, and visualisation »
Aarjav Jain · Challenger Mishra · Pietro Lió -
2022 : Improving Classification and Data Imputation for Single-Cell Transcriptomics with Graph Neural Networks »
Han-Bo Li · Ramon Viñas Torné · Pietro Lió -
2022 : Structure-based Drug Design with Equivariant Diffusion Models »
Arne Schneuing · Yuanqi Du · Charles Harris · Arian Jamasb · Ilia Igashov · weitao Du · Tom Blundell · Pietro Lió · Carla Gomes · Max Welling · Michael Bronstein · Bruno Correia -
2022 : A Federated Learning benchmark for Drug-Target Interaction »
Filip Svoboda · Gianluca Mittone · Nicholas Lane · Pietro Lió -
2022 : Benchmarking Graph Neural Network-based Imputation Methods on Single-Cell Transcriptomics Data »
Han-Bo Li · Ramon Viñas Torné · Pietro Lió -
2022 : Sheaf Attention Networks »
Federico Barbero · Cristian Bodnar · Haitz Sáez de Ocáriz Borde · Pietro Lió -
2022 : Surfing on the Neural Sheaf »
Julian Suk · Lorenzo Giusti · Tamir Hemo · Miguel Lopez · Marco La Vecchia · Konstantinos Barmpas · Cristian Bodnar -
2022 : On the Expressive Power of Geometric Graph Neural Networks »
Cristian Bodnar · Chaitanya K. Joshi · Simon Mathis · Taco Cohen · Pietro Liò -
2022 : Human Interventions in Concept Graph Networks »
Lucie Charlotte Magister · Pietro Barbiero · Dmitry Kazhdan · Federico Siciliano · Gabriele Ciravegna · Fabrizio Silvestri · Mateja Jamnik · Pietro Lió -
2022 : On the Expressive Power of Geometric Graph Neural Networks »
Cristian Bodnar · Chaitanya K. Joshi · Simon Mathis · Taco Cohen · Pietro Liò -
2022 : Sheaf Attention Networks »
Federico Barbero · Cristian Bodnar · Haitz Sáez de Ocáriz Borde · Pietro Lió -
2022 : Dynamic outcomes-based clustering of disease progression in mechanically ventilated patients »
Emma Rocheteau · Ioana Bica · Pietro Lió · Ari Ercole -
2022 Poster: Concept Embedding Models: Beyond the Accuracy-Explainability Trade-Off »
Mateo Espinosa Zarlenga · Pietro Barbiero · Gabriele Ciravegna · Giuseppe Marra · Francesco Giannini · Michelangelo Diligenti · Zohreh Shams · Frederic Precioso · Stefano Melacci · Adrian Weller · Pietro Lió · Mateja Jamnik -
2022 Poster: Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs »
Cristian Bodnar · Francesco Di Giovanni · Benjamin Chamberlain · Pietro Lió · Michael Bronstein -
2022 Poster: Graphein - a Python Library for Geometric Deep Learning and Network Analysis on Biomolecular Structures and Interaction Networks »
Arian Jamasb · Ramon Viñas Torné · Eric Ma · Yuanqi Du · Charles Harris · Kexin Huang · Dominic Hall · Pietro Lió · Tom Blundell -
2022 Poster: Composite Feature Selection Using Deep Ensembles »
Fergus Imrie · Alexander Norcliffe · Pietro Lió · Mihaela van der Schaar -
2022 Poster: SizeShiftReg: a Regularization Method for Improving Size-Generalization in Graph Neural Networks »
Davide Buffelli · Pietro Lió · Fabio Vandin -
2021 : Neural ODE Processes: A Short Summary »
Alexander Norcliffe · Cristian Bodnar · Ben Day · Jacob Moss · Pietro Lió -
2021 : Structure-aware generation of drug-like molecules »
Pavol Drotar · Arian Jamasb · Ben Day · Catalina Cangea · Pietro Lió -
2021 Poster: Weisfeiler and Lehman Go Cellular: CW Networks »
Cristian Bodnar · Fabrizio Frasca · Nina Otter · Yuguang Wang · Pietro Liò · Guido Montufar · Michael Bronstein -
2020 Poster: Constraining Variational Inference with Geometric Jensen-Shannon Divergence »
Jacob Deasy · Nikola Simidjievski · Pietro Lió -
2020 Poster: On Second Order Behaviour in Augmented Neural ODEs »
Alexander Norcliffe · Cristian Bodnar · Ben Day · Nikola Simidjievski · Pietro Lió -
2019 : Catered Lunch and Poster Viewing (in Workshop Room) »
Gustavo Stolovitzky · Prabhu Pradhan · Pablo Duboue · Zhiwen Tang · Aleksei Natekin · Elizabeth Bondi-Kelly · Xavier Bouthillier · Stephanie Milani · Heimo Müller · Andreas T. Holzinger · Stefan Harrer · Ben Day · Andrey Ustyuzhanin · William Guss · Mahtab Mirmomeni