Timezone: »
Modeling and understanding spatiotemporal graphs have been a long-standing research topic in network science and typically replies on network processing hypothesized by human knowledge. In this paper, we aim at pushing forward the modeling and understanding of spatiotemporal graphs via new disentangled deep generative models. Specifically, a new Bayesian model is proposed that factorizes spatiotemporal graphs into spatial, temporal, and graph factors as well as the factors that explain the interplay among them. A variational objective function and new mutual information thresholding algorithms driven by information bottleneck theory have been proposed to maximize the disentanglement among the factors with theoretical guarantees. Qualitative and quantitative experiments on both synthetic and real-world datasets demonstrate the superiority of the proposed model over the state-of-the-art by up to 69.2\% for graph generation and 41.5\% for interpretability.
Author Information
Yuanqi Du (George Mason University)
Xiaojie Guo (JD.COM Silicon Valley Research Center)
Hengning Cao (George Mason University)
Yanfang (Fa Ye (Case Western Reserve University)
Liang Zhao (George Mason University)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 : Learning Disentangled Representation for Spatiotemporal Graph Generation »
Dates n/a. Room
More from the Same Authors
-
2021 : GraphGT: Machine Learning Datasets for Graph Generation and Transformation »
Yuanqi Du · Shiyu Wang · Xiaojie Guo · Hengning Cao · Shujie Hu · Junji Jiang · Aishwarya Varala · Abhinav Angirekula · Liang Zhao -
2021 : GraphGT: Machine Learning Datasets for Graph Generation and Transformation »
Yuanqi Du · Shiyu Wang · Xiaojie Guo · Hengning Cao · Shujie Hu · Junji Jiang · Aishwarya Varala · Abhinav Angirekula · Liang Zhao -
2021 : Physics-Augmented Learning: A New Paradigm Beyond Physics-Informed Learning »
Ziming Liu · Yuanqi Du · Yunyue Chen · Max Tegmark -
2022 : GAUCHE: A Library for Gaussian Processes in Chemistry »
Ryan-Rhys Griffiths · Leo Klarner · Henry Moss · Aditya Ravuri · Sang Truong · Bojana Rankovic · Yuanqi Du · Arian Jamasb · Julius Schwartz · Austin Tripp · Gregory Kell · Anthony Bourached · Alex Chan · Jacob Moss · Chengzhi Guo · Alpha Lee · Philippe Schwaller · Jian Tang -
2022 : PIPS: Path Integral Stochastic Optimal Control for Path Sampling in Molecular Dynamics »
Lars Holdijk · Yuanqi Du · Ferry Hooft · Priyank Jaini · Berend Ensing · Max Welling -
2022 : ChemSpacE: Interpretable and Interactive Chemical Space Exploration »
Yuanqi Du · Xian Liu · Nilay Shah · Shengchao Liu · Jieyu Zhang · Bolei Zhou -
2022 : Structure-based Drug Design with Equivariant Diffusion Models »
Arne Schneuing · Yuanqi Du · Charles Harris · Arian Jamasb · Ilia Igashov · weitao Du · Tom Blundell · Pietro Lió · Carla Gomes · Max Welling · Michael Bronstein · Bruno Correia -
2022 : Improving Molecular Pretraining with Complementary Featurizations »
Yanqiao Zhu · Dingshuo Chen · Yuanqi Du · Yingze Wang · Qiang Liu · Shu Wu -
2022 Poster: Deep Generative Model for Periodic Graphs »
Shiyu Wang · Xiaojie Guo · Liang Zhao -
2022 Poster: Multi-objective Deep Data Generation with Correlated Property Control »
Shiyu Wang · Xiaojie Guo · Xuanyang Lin · Bo Pan · Yuanqi Du · Yinkai Wang · Yanfang Ye · Ashley Petersen · Austin Leitgeb · Saleh Alkhalifa · Kevin Minbiole · William M. Wuest · Amarda Shehu · Liang Zhao -
2021 Workshop: AI for Science: Mind the Gaps »
Payal Chandak · Yuanqi Du · Tianfan Fu · Wenhao Gao · Kexin Huang · Shengchao Liu · Ziming Liu · Gabriel Spadon · Max Tegmark · Hanchen Wang · Adrian Weller · Max Welling · Marinka Zitnik -
2021 Poster: Distilling Meta Knowledge on Heterogeneous Graph for Illicit Drug Trafficker Detection on Social Media »
Yiyue Qian · Yiming Zhang · Yanfang (Fa Ye · Chuxu Zhang -
2021 Poster: Representation Learning on Spatial Networks »
Zheng Zhang · Liang Zhao