Timezone: »
Recently, there has been an increasing interest in models that generate natural language explanations (NLEs) for their decisions. However, training a model to explain its decisions in natural language requires the acquisition of task-specific NLEs, which is time- and resource-consuming. A potential solution is the out-of-domain transfer of NLEs, where explainability is transferred from a domain with rich data to a domain with scarce data via few-shot transfer learning. In this work, we introduce and compare four approaches for few-shot transfer learning for NLEs. We transfer explainability from the natural language inference domain, where a large dataset of human-written NLEs already exists, to the domains of hard cases of pronoun resolution, and commonsense validation. Our results demonstrate that few-shot transfer far outperforms both zero-shot transfer and single-task training with few examples. We also investigate the scalability of the few-shot transfer of explanations, both in terms of training data and model size.
Author Information
Yordan Yordanov (University of Oxford)
Vid Kocijan (University of Oxford)
Thomas Lukasiewicz (University of Oxford)
Oana M Camburu (University of Oxford)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 : Few-Shot Out-of-Domain Transfer of Natural Language Explanations »
Dates n/a. Room
More from the Same Authors
-
2022 : Associative memory via covariance-learning predictive coding networks »
Mufeng Tang · Tommaso Salvatori · Yuhang Song · Beren Millidge · Thomas Lukasiewicz · Rafal Bogacz -
2022 Spotlight: Predictive Coding beyond Gaussian Distributions »
Luca Pinchetti · Tommaso Salvatori · Yordan Yordanov · Beren Millidge · Yuhang Song · Thomas Lukasiewicz -
2022 Spotlight: Lightning Talks 1B-1 »
Qitian Wu · Runlin Lei · Rongqin Chen · Luca Pinchetti · Yangze Zhou · Abhinav Kumar · Hans Hao-Hsun Hsu · Wentao Zhao · Chenhao Tan · Zhen Wang · Shenghui Zhang · Yuesong Shen · Tommaso Salvatori · Gitta Kutyniok · Zenan Li · Amit Sharma · Leong Hou U · Yordan Yordanov · Christian Tomani · Bruno Ribeiro · Yaliang Li · David P Wipf · Daniel Cremers · Bolin Ding · Beren Millidge · Ye Li · Yuhang Song · Junchi Yan · Zhewei Wei · Thomas Lukasiewicz -
2022 Poster: Learning on Arbitrary Graph Topologies via Predictive Coding »
Tommaso Salvatori · Luca Pinchetti · Beren Millidge · Yuhang Song · Tianyi Bao · Rafal Bogacz · Thomas Lukasiewicz -
2022 Poster: Predictive Coding beyond Gaussian Distributions »
Luca Pinchetti · Tommaso Salvatori · Yordan Yordanov · Beren Millidge · Yuhang Song · Thomas Lukasiewicz -
2021 Poster: Associative Memories via Predictive Coding »
Tommaso Salvatori · Yuhang Song · Yujian Hong · Lei Sha · Simon Frieder · Zhenghua Xu · Rafal Bogacz · Thomas Lukasiewicz -
2020 Poster: Lightweight Generative Adversarial Networks for Text-Guided Image Manipulation »
Bowen Li · Xiaojuan Qi · Philip Torr · Thomas Lukasiewicz -
2020 Poster: Coherent Hierarchical Multi-Label Classification Networks »
Eleonora Giunchiglia · Thomas Lukasiewicz -
2020 Poster: BoxE: A Box Embedding Model for Knowledge Base Completion »
Ralph Abboud · Ismail Ceylan · Thomas Lukasiewicz · Tommaso Salvatori -
2020 Spotlight: BoxE: A Box Embedding Model for Knowledge Base Completion »
Ralph Abboud · Ismail Ceylan · Thomas Lukasiewicz · Tommaso Salvatori -
2020 Poster: Can the Brain Do Backpropagation? --- Exact Implementation of Backpropagation in Predictive Coding Networks »
Yuhang Song · Thomas Lukasiewicz · Zhenghua Xu · Rafal Bogacz -
2019 Poster: Controllable Text-to-Image Generation »
Bowen Li · Xiaojuan Qi · Thomas Lukasiewicz · Philip Torr -
2018 Poster: e-SNLI: Natural Language Inference with Natural Language Explanations »
Oana-Maria Camburu · Tim Rocktäschel · Thomas Lukasiewicz · Phil Blunsom