Timezone: »

 
Classifier-Free Diffusion Guidance
Jonathan Ho · Tim Salimans
Event URL: https://openreview.net/forum?id=qw8AKxfYbI »

Classifier guidance is a recently introduced method to trade off mode coverage and sample fidelity in conditional diffusion models post training, in the same spirit as low temperature sampling or truncation in other types of generative models. This method combines the score estimate of a diffusion model with the gradient of an image classifier and thereby requires training an image classifier separate from the diffusion model. We show that guidance can be performed by a pure generative model without such a classifier: we jointly train a conditional and an unconditional diffusion model, and find that it is possible to combine the resulting conditional and unconditional scores to attain a trade-off between sample quality and diversity similar to that obtained using classifier guidance.

Author Information

Jonathan Ho (Google Brain)
Tim Salimans (Google Brain Amsterdam)

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors