Timezone: »
The physical processes of stars are encoded in their periodic pulsations. Millions of variable stars will be observed by the upcoming Vera Rubin Observatory's Legacy Survey of Space and Time. Here, we present a convolutional autoencoder-based pipeline as an automatic approach to search for anomalous periodic variables within The Zwicky Transient Facility Catalog of Periodic Variable Stars (ZTF CPVS). We encode their light curves using a convolutional autoencoder, and we use an isolation forest to sort each periodic variable star by an anomaly score with the latent space. Our overall most anomalous events share some similarities: they are mostly highly variable and irregular evolved stars. An exploration of multiwavelength data suggests that they are most likely Red Giant or Asymptotic Giant Branch stars concentrated in the disk of the Milky Way. Furthermore, we use the learned latent feature for the classification of periodic variables through a hierarchical random forest. This novel semi-supervised approach allows astronomers to identify the most anomalous events within a given physical class, accelerating the potential for scientific discovery.
Author Information
Ho-Sang Chan (The Chinese University of Hong Kong)
Siu Hei Cheung (The Chinese University of Hong Kong)
Victoria Villar (Penn State)
Shirley Ho (Flatiron institute/ New York University/ Carnegie Mellon)
Shirley Ho is a group leader and acting director at Flatiron Institute at Simons foundation, a research professor of physics and an affiliated faculty at Center for Data Science at NYU. Ho also holds associate (adjunct) professorship at Carnegie Mellon University and visiting appointment at Princeton University. She was a senior scientist at Berkeley National Lab from 2016-2018 and a Cooper-Siegel Development chair professor at Carnegie Mellon University before that. Ho was a Seaborg and Chamberlain Fellow from 2008-2011 at Berkeley Lab, after receiving her PhD in Astrophysics from Princeton University in 2008 under supervision of David Spergel. Ho graduated summa cum laude with a B.A. in Physics and a B.A. in Computer Science from UC Berkeley. A cited expert in cosmology, machine learning applications in astrophysics and data science,her interests are using deep learning accelerated simulations to understand the Universe, and other astrophysical phenomena. She tries her best to balance her love for the Universe, the machine and life especially during these crazy times.
Related Events (a corresponding poster, oral, or spotlight)
-
2021 : Searching for the Weirdest Stars: A Convolutional Autoencoder-Based Pipeline For Detecting Anomalous Periodic Variable Stars »
Dates n/a. Room
More from the Same Authors
-
2021 : A Convolutional Autoencoder-Based Pipeline For Anomaly Detection And Classification Of Periodic Variables »
Ho-Sang Chan · Siu Hei Cheung · Shirley Ho -
2021 : Equivariant and Modular DeepSets with Applications in Cluster Cosmology »
Leander Thiele · Miles Cranmer · Shirley Ho · David Spergel -
2022 : Amortized Bayesian Inference for Supernovae in the Era of the Vera Rubin Observatory Using Normalizing Flows »
Victoria Villar -
2022 : A Neural Network Subgrid Model of the Early Stages of Planet Formation »
Thomas Pfeil · Miles Cranmer · Shirley Ho · Philip Armitage · Tilman Birnstiel · Hubert Klahr -
2022 : Recovering Galaxy Cluster Convergence from Lensed CMB with Generative Adversarial Networks »
Liam Parker · Dongwon Han · Shirley Ho · Pablo Lemos -
2022 : Astronomical Image Coaddition with Bundle-Adjusting Radiance Fields »
Harlan Hutton · Harshitha Palegar · Shirley Ho · Miles Cranmer · Peter Melchior · Jenna Eubank -
2022 : Emulating cosmological growth functions with B-Splines »
Ngai Pok Kwan · Chirag Modi · Yin Li · Shirley Ho -
2022 : Adversarial Noise Injection for Learned Turbulence Simulations »
Jingtong Su · Julia Kempe · Drummond Fielding · Nikolaos Tsilivis · Miles Cranmer · Shirley Ho -
2022 : Learning Integrable Dynamics with Action-Angle Networks »
Ameya Daigavane · Arthur Kosmala · Miles Cranmer · Tess Smidt · Shirley Ho -
2022 : Monte Carlo Techniques for Addressing Large Errors and Missing Data in Simulation-based Inference »
Bingjie Wang · Joel Leja · Victoria Villar · Joshua Speagle -
2021 : AI X Cosmology »
Shirley Ho -
2021 : Coding Session 3 »
Shirley Ho · Miles Cranmer -
2021 : The Problem with Deep Learning for Physics (and how to fix it) »
Miles Cranmer · Shirley Ho -
2021 : Accelerating Simulations in Physics with Deep Learning »
Miles Cranmer · Shirley Ho -
2021 : Coding Session »
Shirley Ho · Miles Cranmer -
2021 : Physics-Informed Inductive Biases in Deep Learning »
Miles Cranmer · Shirley Ho -
2021 Tutorial: ML for Physics and Physics for ML »
Shirley Ho · Miles Cranmer -
2021 : The Intersection of ML and Physics »
Shirley Ho · Miles Cranmer -
2020 Workshop: Interpretable Inductive Biases and Physically Structured Learning »
Michael Lutter · Alexander Terenin · Shirley Ho · Lei Wang -
2020 Workshop: Machine Learning and the Physical Sciences »
Anima Anandkumar · Kyle Cranmer · Shirley Ho · Mr. Prabhat · Lenka Zdeborová · Atilim Gunes Baydin · Juan Carrasquilla · Adji Bousso Dieng · Karthik Kashinath · Gilles Louppe · Brian Nord · Michela Paganini · Savannah Thais -
2020 Poster: Discovering Symbolic Models from Deep Learning with Inductive Biases »
Miles Cranmer · Alvaro Sanchez Gonzalez · Peter Battaglia · Rui Xu · Kyle Cranmer · David Spergel · Shirley Ho -
2019 : Opening Remarks »
Atilim Gunes Baydin · Juan Carrasquilla · Shirley Ho · Karthik Kashinath · Michela Paganini · Savannah Thais · Anima Anandkumar · Kyle Cranmer · Roger Melko · Mr. Prabhat · Frank Wood -
2019 Workshop: Machine Learning and the Physical Sciences »
Atilim Gunes Baydin · Juan Carrasquilla · Shirley Ho · Karthik Kashinath · Michela Paganini · Savannah Thais · Anima Anandkumar · Kyle Cranmer · Roger Melko · Mr. Prabhat · Frank Wood