Timezone: »
Policy makers often need to estimate the long-term effects of novel treatments, while only having historical data of older treatment options. We propose a surrogate-based approach using a long-term dataset where only past treatments were administered and a short-term dataset where novel treatments have been administered. Our approach generalizes previous surrogate-style methods, allowing for continuous treatments and serially-correlated treatment policies while maintaining consistency and root-n asymptotically normal estimates under a Markovian assumption on the data and the observational policy. Using a semi-synthetic dataset on customer incentives from a major corporation, we evaluate the performance of our method and discuss solutions to practical challenges when deploying our methodology.
Author Information
Keith Battocchi (Microsoft)
Maggie Hei (Microsoft Research)
Greg Lewis (Microsoft Research)
Miruna Oprescu (Microsoft Research)
Vasilis Syrgkanis (Microsoft Research)
More from the Same Authors
-
2021 : Double/Debiased Machine Learning for Dynamic Treatment Effects via $g$-Estimation »
Greg Lewis · Vasilis Syrgkanis -
2021 : Learned Benchmarks for Subseasonal Forecasting »
Soukayna Mouatadid · Paulo Orenstein · Genevieve Flaspohler · Miruna Oprescu · Judah Cohen · Franklyn Wang · Sean Knight · Maria Geogdzhayeva · Sam Levang · Ernest Fraenkel · Lester Mackey -
2021 : Learned Benchmarks for Subseasonal Forecasting »
Soukayna Mouatadid · Paulo Orenstein · Genevieve Flaspohler · Miruna Oprescu · Judah Cohen · Franklyn Wang · Sean Knight · Maria Geogdzhayeva · Sam Levang · Ernest Fraenkel · Lester Mackey -
2021 Poster: Double/Debiased Machine Learning for Dynamic Treatment Effects »
Greg Lewis · Vasilis Syrgkanis -
2021 Poster: Asymptotics of the Bootstrap via Stability with Applications to Inference with Model Selection »
Morgane Austern · Vasilis Syrgkanis -
2021 Poster: Estimating the Long-Term Effects of Novel Treatments »
Keith Battocchi · Eleanor Dillon · Maggie Hei · Greg Lewis · Miruna Oprescu · Vasilis Syrgkanis -
2020 Poster: Minimax Estimation of Conditional Moment Models »
Nishanth Dikkala · Greg Lewis · Lester Mackey · Vasilis Syrgkanis -
2019 : Coffee break, posters, and 1-on-1 discussions »
Julius von Kügelgen · David Rohde · Candice Schumann · Grace Charles · Victor Veitch · Vira Semenova · Mert Demirer · Vasilis Syrgkanis · Suraj Nair · Aahlad Puli · Masatoshi Uehara · Aditya Gopalan · Yi Ding · Ignavier Ng · Khashayar Khosravi · Eli Sherman · Shuxi Zeng · Aleksander Wieczorek · Hao Liu · Kyra Gan · Jason Hartford · Miruna Oprescu · Alexander D'Amour · Jörn Boehnke · Yuta Saito · Théophile Griveau-Billion · Chirag Modi · Shyngys Karimov · Jeroen Berrevoets · Logan Graham · Imke Mayer · Dhanya Sridhar · Issa Dahabreh · Alan Mishler · Duncan Wadsworth · Khizar Qureshi · Rahul Ladhania · Gota Morishita · Paul Welle -
2019 : Poster Spotlights »
Théophile Griveau-Billion · Rahul Singh · Zichen Zhang · Ciarán Lee · Jesse Krijthe · Grace Charles · Vira Semenova · Rahul Ladhania · Miruna Oprescu -
2019 Poster: Semi-Parametric Efficient Policy Learning with Continuous Actions »
Victor Chernozhukov · Mert Demirer · Greg Lewis · Vasilis Syrgkanis -
2019 Poster: Low-Rank Bandit Methods for High-Dimensional Dynamic Pricing »
Jonas Mueller · Vasilis Syrgkanis · Matt Taddy -
2019 Poster: Machine Learning Estimation of Heterogeneous Treatment Effects with Instruments »
Vasilis Syrgkanis · Victor Lei · Miruna Oprescu · Maggie Hei · Keith Battocchi · Greg Lewis -
2019 Spotlight: Machine Learning Estimation of Heterogeneous Treatment Effects with Instruments »
Vasilis Syrgkanis · Victor Lei · Miruna Oprescu · Maggie Hei · Keith Battocchi · Greg Lewis -
2018 Workshop: Smooth Games Optimization and Machine Learning »
Simon Lacoste-Julien · Ioannis Mitliagkas · Gauthier Gidel · Vasilis Syrgkanis · Eva Tardos · Leon Bottou · Sebastian Nowozin -
2017 Workshop: Learning in the Presence of Strategic Behavior »
Nika Haghtalab · Yishay Mansour · Tim Roughgarden · Vasilis Syrgkanis · Jennifer Wortman Vaughan -
2017 Poster: Welfare Guarantees from Data »
Darrell Hoy · Denis Nekipelov · Vasilis Syrgkanis -
2017 Poster: Robust Optimization for Non-Convex Objectives »
Robert S Chen · Brendan Lucier · Yaron Singer · Vasilis Syrgkanis -
2017 Poster: A Sample Complexity Measure with Applications to Learning Optimal Auctions »
Vasilis Syrgkanis -
2017 Oral: Robust Optimization for Non-Convex Objectives »
Robert S Chen · Brendan Lucier · Yaron Singer · Vasilis Syrgkanis -
2016 Poster: Improved Regret Bounds for Oracle-Based Adversarial Contextual Bandits »
Vasilis Syrgkanis · Haipeng Luo · Akshay Krishnamurthy · Robert Schapire -
2015 Poster: No-Regret Learning in Bayesian Games »
Jason Hartline · Vasilis Syrgkanis · Eva Tardos -
2015 Poster: Fast Convergence of Regularized Learning in Games »
Vasilis Syrgkanis · Alekh Agarwal · Haipeng Luo · Robert Schapire -
2015 Oral: Fast Convergence of Regularized Learning in Games »
Vasilis Syrgkanis · Alekh Agarwal · Haipeng Luo · Robert Schapire