Timezone: »
Learning Treatment Effects in Panels with General Intervention Patterns
Vivek Farias · Andrew Li · Tianyi Peng
The problem of causal inference with panel data is a central econometric question. The following is a fundamental version of this problem: Let $M^*$ be a low-rank matrix and $E$ be a zero-mean noise matrix. For a `treatment' matrix $Z$ with entries in $\{0,1\}$ we observe the matrix $O$ with entries $O_{ij} := M^*_{ij} + E_{ij} + \mathcal{T}_{ij} Z_{ij}$ where $\mathcal{T}_{ij} $ are unknown, heterogeneous treatment effects. The problem requires we estimate the average treatment effect $\tau^* := \sum_{ij} \mathcal{T}_{ij} Z_{ij} / \sum_{ij} Z_{ij}$. The synthetic control paradigm provides an approach to estimating $\tau^*$ when $Z$ places support on a single row. This paper extends that framework to allow rate-optimal recovery of $\tau^*$ for general $Z$, thus broadly expanding its applicability. Our guarantees are the first of their type in this general setting. Computational experiments on synthetic and real-world data show a substantial advantage over competing estimators.
Author Information
Vivek Farias (Massachusetts Institute of Technology)
Andrew Li (Carnegie Mellon University)
Tianyi Peng (Massachusetts Institute of Technology)
More from the Same Authors
-
2021 Spotlight: Fair Exploration via Axiomatic Bargaining »
Jackie Baek · Vivek Farias -
2021 : The Limits to Learning a Diffusion Model »
Jackie Baek · Vivek Farias · ANDREEA GEORGESCU · Retsef Levi · Tianyi Peng · Joshua Wilde · Andrew Zheng -
2021 : The Limits to Learning a Diffusion Model »
Jackie Baek · Vivek Farias · ANDREEA GEORGESCU · Retsef Levi · Tianyi Peng · Joshua Wilde · Andrew Zheng -
2022 Spotlight: Dynamic Pricing with Monotonicity Constraint under Unknown Parametric Demand Model »
Su Jia · Andrew Li · R Ravi -
2022 Spotlight: Lightning Talks 4A-1 »
Jiawei Huang · Su Jia · Abdurakhmon Sadiev · Ruomin Huang · Yuanyu Wan · Denizalp Goktas · Jiechao Guan · Andrew Li · Wei-Wei Tu · Li Zhao · Amy Greenwald · Jiawei Huang · Dmitry Kovalev · Yong Liu · Wenjie Liu · Peter Richtarik · Lijun Zhang · Zhiwu Lu · R Ravi · Tao Qin · Wei Chen · Hu Ding · Nan Jiang · Tie-Yan Liu -
2022 Poster: Markovian Interference in Experiments »
Vivek Farias · Andrew Li · Tianyi Peng · Andrew Zheng -
2022 Poster: Dynamic Pricing with Monotonicity Constraint under Unknown Parametric Demand Model »
Su Jia · Andrew Li · R Ravi -
2021 Oral: Learning Treatment Effects in Panels with General Intervention Patterns »
Vivek Farias · Andrew Li · Tianyi Peng -
2021 Poster: Greedy Approximation Algorithms for Active Sequential Hypothesis Testing »
Kyra Gan · Su Jia · Andrew Li -
2021 Poster: Fair Exploration via Axiomatic Bargaining »
Jackie Baek · Vivek Farias -
2021 Poster: Learning Treatment Effects in Panels with General Intervention Patterns »
Vivek Farias · Andrew Li · Tianyi Peng -
2016 Poster: Optimistic Gittins Indices »
Eli Gutin · Vivek Farias -
2012 Poster: Non-parametric Approximate Dynamic Programming via the Kernel Method »
Nikhil Bhat · Ciamac C Moallemi · Vivek Farias -
2009 Poster: A Data-Driven Approach to Modeling Choice »
Vivek Farias · Srikanth Jagabathula · Devavrat Shah -
2009 Spotlight: A Data-Driven Approach to Modeling Choice »
Vivek Farias · Srikanth Jagabathula · Devavrat Shah -
2009 Poster: A Smoothed Approximate Linear Program »
Vijay Desai · Vivek Farias · Ciamac C Moallemi -
2009 Spotlight: A Smoothed Approximate Linear Program »
Vijay Desai · Vivek Farias · Ciamac C Moallemi