Timezone: »
Many organizations measure treatment effects via an experimentation platform to evaluate the casual effect of product variations prior to full-scale deployment [3,25]. However, standard experimentation platforms do not perform optimally for end user populations that exhibit heterogeneous treatment effects (HTEs) [3,5]. Here we present a personalized experimentation framework, Personalized Experiments (PEX), which optimizes treatment group assignment at the user level via HTE modeling and sequential decision policy optimization to optimize multiple short term and long term outcomes simultaneously. We describe an end-to-end workflow that has proven to be successful in practice and can be readily implemented using open-source software
Author Information
Mia Garrard (Facebook)
Hanson Wang (Facebook)
Ben Letham (Facebook)
Zehui Wang (Facebook)
Yin Huang (Facebook)
Yichun Hu (Cornell University)
Chad Zhou (Facebook)
Norm Zhou (Facebook)
Eytan Bakshy (Meta)
More from the Same Authors
-
2021 : Semiparametric approaches for decision making in high-dimensional sensory discrimination tasks »
Stephen Keeley · Ben Letham · Chase Tymms · Michael Shvartsman -
2021 : Personalization for Web-based Services using Offline Reinforcement Learning »
Pavlos A Apostolopoulos · Zehui Wang · Hanson Wang · Chad Zhou · Kittipat Virochsiri · Norm Zhou · Igor Markov -
2022 : Sparse Bayesian Optimization »
Sulin Liu · Qing Feng · David Eriksson · Ben Letham · Eytan Bakshy -
2022 : One-Shot Optimal Design for Gaussian Process Analysis of Randomized Experiments »
Jelena Markovic · Qing Feng · Eytan Bakshy -
2023 Poster: Unexpected Improvements to Expected Improvement for Bayesian Optimization »
Sebastian Ament · Samuel Daulton · David Eriksson · Maximilian Balandat · Eytan Bakshy -
2022 : Panel »
Roman Garnett · José Miguel Hernández-Lobato · Eytan Bakshy · Syrine Belakaria · Stefanie Jegelka -
2022 Poster: Bayesian Optimization over Discrete and Mixed Spaces via Probabilistic Reparameterization »
Samuel Daulton · Xingchen Wan · David Eriksson · Maximilian Balandat · Michael A Osborne · Eytan Bakshy -
2021 Poster: Multi-Step Budgeted Bayesian Optimization with Unknown Evaluation Costs »
Raul Astudillo · Daniel Jiang · Maximilian Balandat · Eytan Bakshy · Peter Frazier -
2021 Poster: Parallel Bayesian Optimization of Multiple Noisy Objectives with Expected Hypervolume Improvement »
Samuel Daulton · Maximilian Balandat · Eytan Bakshy -
2021 Poster: Bayesian Optimization with High-Dimensional Outputs »
Wesley Maddox · Maximilian Balandat · Andrew Wilson · Eytan Bakshy -
2020 Poster: Differentiable Expected Hypervolume Improvement for Parallel Multi-Objective Bayesian Optimization »
Samuel Daulton · Maximilian Balandat · Eytan Bakshy -
2020 Poster: BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization »
Maximilian Balandat · Brian Karrer · Daniel Jiang · Samuel Daulton · Ben Letham · Andrew Wilson · Eytan Bakshy -
2020 Poster: Re-Examining Linear Embeddings for High-Dimensional Bayesian Optimization »
Ben Letham · Roberto Calandra · Akshara Rai · Eytan Bakshy -
2020 Poster: High-Dimensional Contextual Policy Search with Unknown Context Rewards using Bayesian Optimization »
Qing Feng · Ben Letham · Hongzi Mao · Eytan Bakshy -
2020 Spotlight: High-Dimensional Contextual Policy Search with Unknown Context Rewards using Bayesian Optimization »
Qing Feng · Ben Letham · Hongzi Mao · Eytan Bakshy -
2019 : Invited Speaker: Eytan Bakshy »
Eytan Bakshy -
2018 : Software Panel »
Ben Letham · David Duvenaud · Dustin Tran · Aki Vehtari