Timezone: »
Farkas' Theorem of the Alternative for Prior Knowledge in Deep Networks
Jeffery Kline · Joseph Bockhorst
In this paper, prior knowledge expressed in the form of polyhedral sets is introduced into the training of a deep neural network. This approach to using prior knowledge extends earlier work that applies Farkas' Theorem of the Alternative to linear support vector machine classifiers. Through this extension, we gain the ability to sculpt the decision boundary of a neural network by training on a set of discrete data while simultaneously fitting an uncountable number of points that live within a polytope that is defined by prior knowledge. We demonstrate viability of this approach on both synthetic and benchmark data sets.
Author Information
Jeffery Kline (American Family Insurance)
Joseph Bockhorst (America Family Insurance)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 : Farkas' Theorem of the Alternative for Prior Knowledge in Deep Networks »
Dates n/a. Room
More from the Same Authors
-
2021 : Poster Session 2 (gather.town) »
Wenjie Li · Akhilesh Soni · Jinwuk Seok · Jianhao Ma · Jeffery Kline · Mathieu Tuli · Miaolan Xie · Robert Gower · Quanqi Hu · Matteo Cacciola · Yuanlu Bai · Boyue Li · Wenhao Zhan · Shentong Mo · Junhyung Lyle Kim · Sajad Fathi Hafshejani · Chris Junchi Li · Zhishuai Guo · Harshvardhan Harshvardhan · Neha Wadia · Tatjana Chavdarova · Difan Zou · Zixiang Chen · Aman Gupta · Jacques Chen · Betty Shea · Benoit Dherin · Aleksandr Beznosikov -
2021 : Contributed Talks in Session 2 (Zoom) »
Courtney Paquette · Chris Junchi Li · Jeffery Kline · Junhyung Lyle Kim · Pascal Esser -
2020 : Spotlight: Weighting Vectors for Machine Learning: Numerical Harmonic Analysis Applied to Boundary Detection »
Eric Bunch · Jeffery Kline · Daniel Dickinson · Glenn Fung