Timezone: »
Providing examples is one of the most common way for end-users to interact with program synthesizers. However, program synthesis systems assume that examples consistent with the program are chosen at random, and do not exploit the fact that users choose examples pragmatically. Prior work modeled program synthesis as pragmatic communication, but required an inefficient enumeration of the entire program space. In this paper, we show that it is possible to build a program synthesizer that is both pragmatic and efficient by approximating the joint distribution of programs with a product of independent factors, and performing pragmatic inference on each factor separately. This naive factored distribution approximates the exact joint distribution well when the examples are given pragmatically, and is compatible with a very simple neuro-symbolic synthesis algorithm.
Author Information
Saujas Vaduguru (International Institute of Information Technology, Hyderabad)
Hi I'm Saujas, an undergraduate student in computer science and linguistics interested in program synthesis, reasoning, and NLP.
Yewen Pu (Autodesk)
Kevin Ellis (MIT)
More from the Same Authors
-
2021 Spotlight: Program Synthesis Guided Reinforcement Learning for Partially Observed Environments »
Yichen Yang · Jeevana Priya Inala · Osbert Bastani · Yewen Pu · Armando Solar-Lezama · Martin Rinard -
2023 Poster: DiffVL: Scaling Up Soft Body Manipulation using Vision-Language Driven Differentiable Physics »
Zhiao Huang · Feng Chen · Yewen Pu · Chunru Lin · Hao Su · Chuang Gan -
2023 Poster: ANPL: Compiling Natural Programs with Interactive Decomposition »
Di Huang · Ziyuan Nan · Xing Hu · Yewen Pu · Pengwei Jin · Shaohui Peng · Yuanbo Wen · Rui Zhang · Zidong Du · Qi Guo · Yunji Chen -
2022 Poster: Communicating Natural Programs to Humans and Machines »
Sam Acquaviva · Yewen Pu · Marta Kryven · Theodoros Sechopoulos · Catherine Wong · Gabrielle Ecanow · Maxwell Nye · Michael Tessler · Josh Tenenbaum -
2021 Poster: Program Synthesis Guided Reinforcement Learning for Partially Observed Environments »
Yichen Yang · Jeevana Priya Inala · Osbert Bastani · Yewen Pu · Armando Solar-Lezama · Martin Rinard -
2020 : Invited Talk (Kevin Ellis) »
Kevin Ellis -
2020 : Kevin Ellis Talk »
Kevin Ellis -
2020 Poster: Program Synthesis with Pragmatic Communication »
Yewen Pu · Kevin Ellis · Marta Kryven · Josh Tenenbaum · Armando Solar-Lezama -
2020 Poster: Learning abstract structure for drawing by efficient motor program induction »
Lucas Tian · Kevin Ellis · Marta Kryven · Josh Tenenbaum -
2020 Oral: Learning abstract structure for drawing by efficient motor program induction »
Lucas Tian · Kevin Ellis · Marta Kryven · Josh Tenenbaum -
2020 Poster: Neurosymbolic Transformers for Multi-Agent Communication »
Jeevana Priya Inala · Yichen Yang · James Paulos · Yewen Pu · Osbert Bastani · Vijay Kumar · Martin Rinard · Armando Solar-Lezama -
2019 Poster: Write, Execute, Assess: Program Synthesis with a REPL »
Kevin Ellis · Maxwell Nye · Yewen Pu · Felix Sosa · Josh Tenenbaum · Armando Solar-Lezama -
2018 Poster: Learning to Infer Graphics Programs from Hand-Drawn Images »
Kevin Ellis · Daniel Ritchie · Armando Solar-Lezama · Josh Tenenbaum -
2018 Poster: Learning Libraries of Subroutines for Neurally–Guided Bayesian Program Induction »
Kevin Ellis · Lucas Morales · Mathias Sablé-Meyer · Armando Solar-Lezama · Josh Tenenbaum -
2018 Spotlight: Learning to Infer Graphics Programs from Hand-Drawn Images »
Kevin Ellis · Daniel Ritchie · Armando Solar-Lezama · Josh Tenenbaum -
2018 Spotlight: Learning Libraries of Subroutines for Neurally–Guided Bayesian Program Induction »
Kevin Ellis · Lucas Morales · Mathias Sablé-Meyer · Armando Solar-Lezama · Josh Tenenbaum -
2016 Poster: Sampling for Bayesian Program Learning »
Kevin Ellis · Armando Solar-Lezama · Josh Tenenbaum -
2015 Poster: Unsupervised Learning by Program Synthesis »
Kevin Ellis · Armando Solar-Lezama · Josh Tenenbaum