Timezone: »
Panel Discussion
Pascal Poupart · Ali Ghodsi · Luke Zettlemoyer · Sameer Singh · Kevin Duh · Yejin Choi · Lu Hou
Mon Dec 13 03:15 PM -- 04:00 PM (PST) @
Author Information
Pascal Poupart (University of Waterloo & Vector Institute)
Ali Ghodsi (University of Waterloo)
Luke Zettlemoyer (University of Washington and Facebook)
Sameer Singh (University of California, Irvine)
Kevin Duh (Johns Hopkins University)
Yejin Choi (University of Washington)
Lu Hou (Huawei Technologies Co., Ltd)
More from the Same Authors
-
2021 : CommonsenseQA 2.0: Exposing the Limits of AI through Gamification »
Alon Talmor · Ori Yoran · Ronan Le Bras · Chandra Bhagavatula · Yoav Goldberg · Yejin Choi · Jonathan Berant -
2021 : NaturalProofs: Mathematical Theorem Proving in Natural Language »
Sean Welleck · Jiacheng Liu · Ronan Le Bras · Hanna Hajishirzi · Yejin Choi · Kyunghyun Cho -
2021 : Towards Grounded Natural Language Proof Generation »
Sean Welleck · Jiacheng Liu · Yejin Choi -
2021 : Cutting Down on Prompts and Parameters:Simple Few-Shot Learning with Language Models »
Robert Logan · Ivana Balazevic · Eric Wallace · Fabio Petroni · Sameer Singh · Sebastian Riedel -
2022 Poster: Optimality and Stability in Non-Convex Smooth Games »
Guojun Zhang · Pascal Poupart · Yaoliang Yu -
2022 : DyLoRA: Parameter Efficient Tuning of Pre-trained Models using Dynamic Search-Free Low Rank Adaptation »
Mojtaba Valipour · Mehdi Rezaghoizadeh · Ivan Kobyzev · Ali Ghodsi -
2022 : SymbolicGPT: A Generative Transformer Model for Symbolic Regression »
Mojtaba Valipour · Bowen You · Maysum H Panju · Ali Ghodsi -
2022 : Improved Knowledge Distillation by Utilizing Backward Pass Knowledge in Neural Networks »
Aref Jafari · Mehdi Rezaghoizadeh · Ali Ghodsi -
2022 : Attribute Controlled Dialogue Prompting »
Runcheng Liu · Ahmad Rashid · Ivan Kobyzev · Mehdi Rezaghoizadeh · Pascal Poupart -
2022 : Quantifying Social Biases Using Templates is Unreliable »
Preethi Seshadri · Pouya Pezeshkpour · Sameer Singh -
2022 : Information-Theoretic Evaluation of Free-Text Rationales with Conditional $\mathcal{V}$-Information »
Hanjie Chen · Faeze Brahman · Xiang Ren · Yangfeng Ji · Yejin Choi · Swabha Swayamdipta -
2022 : TalkToModel: Explaining Machine Learning Models with Interactive Natural Language Conversations »
Dylan Slack · Satyapriya Krishna · Himabindu Lakkaraju · Sameer Singh -
2022 : Geometric attacks on batch normalization »
Amur Ghose · Apurv Gupta · Yaoliang Yu · Pascal Poupart -
2023 Poster: Stable and low-precision training for large-scale vision-language models »
Mitchell Wortsman · Tim Dettmers · Luke Zettlemoyer · Ari Morcos · Ali Farhadi · Ludwig Schmidt -
2023 Poster: Toolformer: Language Models Can Teach Themselves to Use Tools »
Timo Schick · Jane Dwivedi-Yu · Roberto Dessi · Roberta Raileanu · Maria Lomeli · Eric Hambro · Luke Zettlemoyer · Nicola Cancedda · Thomas Scialom -
2023 Poster: Batchnorm Allows Unsupervised Radial Attacks »
Amur Ghose · Apurv Gupta · Yaoliang Yu · Pascal Poupart -
2023 Poster: Localized Symbolic Knowledge Distillation for Visual Commonsense Models »
Jae Sung Park · Jack Hessel · Khyathi Chandu · Paul Pu Liang · Ximing Lu · Qiuyuan Huang · Peter West · Jianfeng Gao · Ali Farhadi · Yejin Choi -
2023 Poster: SwiftSage: A Generative Agent with Fast and Slow Thinking for Complex Interactive Tasks »
Bill Yuchen Lin · Yicheng Fu · Karina Yang · Prithviraj (Raj) Ammanabrolu · Faeze Brahman · Shiyu Huang · Chandra Bhagavatula · Yejin Choi · Xiang Ren -
2023 Poster: QLoRA: Efficient Finetuning of Quantized LLMs »
Tim Dettmers · Artidoro Pagnoni · Ari Holtzman · Luke Zettlemoyer -
2023 Poster: LIMA: Less Is More for Alignment »
Chunting Zhou · Pengfei Liu · Puxin Xu · Srinivasan Iyer · Jiao Sun · Yuning Mao · Xuezhe Ma · Avia Efrat · Ping Yu · LILI YU · Susan Zhang · Gargi Ghosh · Mike Lewis · Luke Zettlemoyer · Omer Levy -
2023 Poster: MEGABYTE: Predicting Million-byte Sequences with Multiscale Transformers »
LILI YU · Daniel Simig · Colin Flaherty · Armen Aghajanyan · Luke Zettlemoyer · Mike Lewis -
2023 Poster: Faith and Fate: Limits of Transformers on Compositionality »
Nouha Dziri · Ximing Lu · Melanie Sclar · Xiang (Lorraine) Li · Liwei Jiang · Bill Yuchen Lin · Sean Welleck · Peter West · Chandra Bhagavatula · Ronan Le Bras · Jena Hwang · Soumya Sanyal · Xiang Ren · Allyson Ettinger · Zaid Harchaoui · Yejin Choi -
2023 Poster: An Alternative to Variance: Gini Deviation for Risk-averse Policy Gradient »
Yudong Luo · Guiliang Liu · Pascal Poupart · Yangchen Pan -
2023 Poster: Multi-Modal Inverse Constrained Reinforcement Learning from a Mixture of Demonstrations »
Guanren Qiao · Guiliang Liu · Pascal Poupart · Zhiqiang Xu -
2023 Poster: Post Hoc Explanations of Language Models Can Improve Language Models »
Satyapriya Krishna · Jiaqi Ma · Dylan Slack · Asma Ghandeharioun · Sameer Singh · Himabindu Lakkaraju -
2023 Poster: FETV: A Benchmark for Fine-Grained Evaluation of Open-Domain Text-to-Video Generation »
Yuanxin Liu · Lei Li · Shuhuai Ren · Rundong Gao · Shicheng Li · Sishuo Chen · Xu Sun · Lu Hou -
2023 Poster: Multimodal C4: An Open, Billion-scale Corpus of Images Interleaved with Text »
Wanrong Zhu · Jack Hessel · Anas Awadalla · Samir Yitzhak Gadre · Jesse Dodge · Alex Fang · Youngjae Yu · Ludwig Schmidt · William Yang Wang · Yejin Choi -
2023 Poster: RealTime QA: What's the Answer Right Now? »
Jungo Kasai · Keisuke Sakaguchi · yoichi takahashi · Ronan Le Bras · Akari Asai · Xinyan Yu · Dragomir Radev · Noah Smith · Yejin Choi · Kentaro Inui -
2023 Oral: Toolformer: Language Models Can Teach Themselves to Use Tools »
Timo Schick · Jane Dwivedi-Yu · Roberto Dessi · Roberta Raileanu · Maria Lomeli · Eric Hambro · Luke Zettlemoyer · Nicola Cancedda · Thomas Scialom -
2023 Oral: QLoRA: Efficient Finetuning of Quantized LLMs »
Tim Dettmers · Artidoro Pagnoni · Ari Holtzman · Luke Zettlemoyer -
2023 : Keynote Talk 2 »
Luke Zettlemoyer -
2023 Workshop: AI meets Moral Philosophy and Moral Psychology: An Interdisciplinary Dialogue about Computational Ethics »
Sydney Levine · Liwei Jiang · Jared Moore · Zhijing Jin · Yejin Choi -
2022 : Contributed Talk: TalkToModel: Explaining Machine Learning Models with Interactive Natural Language Conversations »
Dylan Slack · Satyapriya Krishna · Himabindu Lakkaraju · Sameer Singh -
2022 Spotlight: Optimality and Stability in Non-Convex Smooth Games »
Guojun Zhang · Pascal Poupart · Yaoliang Yu -
2022 : Attribute Controlled Dialogue Prompting »
Runcheng Liu · Ahmad Rashid · Ivan Kobyzev · Mehdi Rezaghoizadeh · Pascal Poupart -
2022 : Fine-grained Interactive Vision Language Pre-training »
Lu Hou · Lu Hou -
2022 Workshop: Second Workshop on Efficient Natural Language and Speech Processing (ENLSP-II) »
Mehdi Rezagholizadeh · Peyman Passban · Yue Dong · Lili Mou · Pascal Poupart · Ali Ghodsi · Qun Liu -
2022 Poster: GPT3.int8(): 8-bit Matrix Multiplication for Transformers at Scale »
Tim Dettmers · Mike Lewis · Younes Belkada · Luke Zettlemoyer -
2022 Poster: COLD Decoding: Energy-based Constrained Text Generation with Langevin Dynamics »
Lianhui Qin · Sean Welleck · Daniel Khashabi · Yejin Choi -
2022 Poster: Towards Efficient Post-training Quantization of Pre-trained Language Models »
Haoli Bai · Lu Hou · Lifeng Shang · Xin Jiang · Irwin King · Michael R Lyu -
2022 Poster: Memorization Without Overfitting: Analyzing the Training Dynamics of Large Language Models »
Kushal Tirumala · Aram Markosyan · Luke Zettlemoyer · Armen Aghajanyan -
2022 Poster: Wukong: A 100 Million Large-scale Chinese Cross-modal Pre-training Benchmark »
Jiaxi Gu · Xiaojun Meng · Guansong Lu · Lu Hou · Niu Minzhe · Xiaodan Liang · Lewei Yao · Runhui Huang · Wei Zhang · Xin Jiang · Chunjing XU · Hang Xu -
2022 Poster: Uncertainty-Aware Reinforcement Learning for Risk-Sensitive Player Evaluation in Sports Game »
Guiliang Liu · Yudong Luo · Oliver Schulte · Pascal Poupart -
2022 Poster: Improving Policy Learning via Language Dynamics Distillation »
Victor Zhong · Jesse Mu · Luke Zettlemoyer · Edward Grefenstette · Tim Rocktäschel -
2022 Poster: QUARK: Controllable Text Generation with Reinforced Unlearning »
Ximing Lu · Sean Welleck · Jack Hessel · Liwei Jiang · Lianhui Qin · Peter West · Prithviraj Ammanabrolu · Yejin Choi -
2022 Poster: NaturalProver: Grounded Mathematical Proof Generation with Language Models »
Sean Welleck · Jiacheng Liu · Ximing Lu · Hannaneh Hajishirzi · Yejin Choi -
2021 : Best Papers and Closing Remarks »
Ali Ghodsi · Pascal Poupart -
2021 : Battling with Larger Models through Grounding and Searching »
Yejin Choi -
2021 : Toward Efficient Training of Large Language Models with Balanced Conditional Compute »
Luke Zettlemoyer -
2021 : Benchmarks for Multi-objective Hyperparameter Optimization »
Kevin Duh -
2021 : How to Win LMs and Influence Predictions: Using Short Phrases to Control NLP Models »
Sameer Singh -
2021 : Cutting Down on Prompts and Parameters:Simple Few-Shot Learning with Language Models »
Robert Logan · Ivana Balazevic · Eric Wallace · Fabio Petroni · Sameer Singh · Sebastian Riedel -
2021 : Opening of the Afternoon Session »
Ali Ghodsi -
2021 : Compression and Acceleration of Pre-trained Language Models »
Lu Hou -
2021 Workshop: Efficient Natural Language and Speech Processing (Models, Training, and Inference) »
Mehdi Rezaghoizadeh · Lili Mou · Yue Dong · Pascal Poupart · Ali Ghodsi · Qun Liu -
2021 : Opening Speech »
Pascal Poupart -
2021 Oral: MERLOT: Multimodal Neural Script Knowledge Models »
Rowan Zellers · Ximing Lu · Jack Hessel · Youngjae Yu · Jae Sung Park · Jize Cao · Ali Farhadi · Yejin Choi -
2021 Poster: Luna: Linear Unified Nested Attention »
Xuezhe Ma · Xiang Kong · Sinong Wang · Chunting Zhou · Jonathan May · Hao Ma · Luke Zettlemoyer -
2021 : NaturalProofs: Mathematical Theorem Proving in Natural Language »
Sean Welleck · Jiacheng Liu · Ronan Le Bras · Hanna Hajishirzi · Yejin Choi · Kyunghyun Cho -
2021 Poster: Divergence Frontiers for Generative Models: Sample Complexity, Quantization Effects, and Frontier Integrals »
Lang Liu · Krishna Pillutla · Sean Welleck · Sewoong Oh · Yejin Choi · Zaid Harchaoui -
2021 Poster: Reliable Post hoc Explanations: Modeling Uncertainty in Explainability »
Dylan Slack · Anna Hilgard · Sameer Singh · Himabindu Lakkaraju -
2021 : PYLON: A PyTorch Framework for Learning with Constraints »
Kareem Ahmed · Tao Li · Nu Mai Thy Ton · Quan Guo · Kai-Wei Chang · Parisa Kordjamshidi · Vivek Srikumar · Guy Van den Broeck · Sameer Singh -
2021 Poster: MERLOT: Multimodal Neural Script Knowledge Models »
Rowan Zellers · Ximing Lu · Jack Hessel · Youngjae Yu · Jae Sung Park · Jize Cao · Ali Farhadi · Yejin Choi -
2021 Poster: Quantifying and Improving Transferability in Domain Generalization »
Guojun Zhang · Han Zhao · Yaoliang Yu · Pascal Poupart -
2021 Poster: Learning Tree Interpretation from Object Representation for Deep Reinforcement Learning »
Guiliang Liu · Xiangyu Sun · Oliver Schulte · Pascal Poupart -
2021 Poster: SILG: The Multi-domain Symbolic Interactive Language Grounding Benchmark »
Victor Zhong · Austin W. Hanjie · Sida Wang · Karthik Narasimhan · Luke Zettlemoyer -
2021 Poster: MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers »
Krishna Pillutla · Swabha Swayamdipta · Rowan Zellers · John Thickstun · Sean Welleck · Yejin Choi · Zaid Harchaoui -
2021 Poster: Counterfactual Explanations Can Be Manipulated »
Dylan Slack · Anna Hilgard · Himabindu Lakkaraju · Sameer Singh -
2021 : CommonsenseQA 2.0: Exposing the Limits of AI through Gamification »
Alon Talmor · Ori Yoran · Ronan Le Bras · Chandra Bhagavatula · Yoav Goldberg · Yejin Choi · Jonathan Berant -
2021 Oral: MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers »
Krishna Pillutla · Swabha Swayamdipta · Rowan Zellers · John Thickstun · Sean Welleck · Yejin Choi · Zaid Harchaoui -
2020 : Panel Discussion & Closing »
Yejin Choi · Alexei Efros · Chelsea Finn · Kristen Grauman · Quoc V Le · Yann LeCun · Ruslan Salakhutdinov · Eric Xing -
2020 : QA: Yejin Choi »
Yejin Choi -
2020 : Invited Talk: Yejin Choi »
Yejin Choi -
2020 : Invited talk - De-noising Sequence-to-Sequence Pre-training »
Luke Zettlemoyer -
2020 : Adversarial, Socially Aware, and Commonsensical Data »
Yejin Choi -
2020 Poster: Learning Agent Representations for Ice Hockey »
Guiliang Liu · Oliver Schulte · Pascal Poupart · Mike Rudd · Mehrsan Javan -
2020 Tutorial: (Track2) Explaining Machine Learning Predictions: State-of-the-art, Challenges, and Opportunities Q&A »
Himabindu Lakkaraju · Julius Adebayo · Sameer Singh -
2020 Poster: Learning Dynamic Belief Graphs to Generalize on Text-Based Games »
Ashutosh Adhikari · Xingdi Yuan · Marc-Alexandre Côté · Mikuláš Zelinka · Marc-Antoine Rondeau · Romain Laroche · Pascal Poupart · Jian Tang · Adam Trischler · Will Hamilton -
2020 Poster: DynaBERT: Dynamic BERT with Adaptive Width and Depth »
Lu Hou · Zhiqi Huang · Lifeng Shang · Xin Jiang · Xiao Chen · Qun Liu -
2020 Poster: Pre-training via Paraphrasing »
Mike Lewis · Marjan Ghazvininejad · Gargi Ghosh · Armen Aghajanyan · Sida Wang · Luke Zettlemoyer -
2020 Spotlight: DynaBERT: Dynamic BERT with Adaptive Width and Depth »
Lu Hou · Zhiqi Huang · Lifeng Shang · Xin Jiang · Xiao Chen · Qun Liu -
2020 Tutorial: (Track2) Explaining Machine Learning Predictions: State-of-the-art, Challenges, and Opportunities »
Himabindu Lakkaraju · Julius Adebayo · Sameer Singh -
2019 : Invited Talk (Yejin Choi) »
Yejin Choi -
2019 : Yejin Choi »
Yejin Choi -
2019 Workshop: KR2ML - Knowledge Representation and Reasoning Meets Machine Learning »
Veronika Thost · Christian Muise · Kartik Talamadupula · Sameer Singh · Christopher Ré -
2019 Poster: Defending Against Neural Fake News »
Rowan Zellers · Ari Holtzman · Hannah Rashkin · Yonatan Bisk · Ali Farhadi · Franziska Roesner · Yejin Choi -
2019 Demonstration: AllenNLP Interpret: Explaining Predictions of NLP Models »
Jens Tuyls · Eric Wallace · Matt Gardner · Junlin Wang · Sameer Singh · Sanjay Subramanian -
2019 Poster: Normalization Helps Training of Quantized LSTM »
Lu Hou · Jinhua Zhu · James Kwok · Fei Gao · Tao Qin · Tie-Yan Liu -
2018 Workshop: Reinforcement Learning under Partial Observability »
Joni Pajarinen · Chris Amato · Pascal Poupart · David Hsu -
2018 Poster: Deep Homogeneous Mixture Models: Representation, Separation, and Approximation »
Priyank Jaini · Pascal Poupart · Yaoliang Yu -
2018 Poster: Online Structure Learning for Feed-Forward and Recurrent Sum-Product Networks »
Agastya Kalra · Abdullah Rashwan · Wei-Shou Hsu · Pascal Poupart · Prashant Doshi · George Trimponias -
2018 Poster: Unsupervised Video Object Segmentation for Deep Reinforcement Learning »
Vikash Goel · Jameson Weng · Pascal Poupart -
2018 Poster: Monte-Carlo Tree Search for Constrained POMDPs »
Jongmin Lee · Geon-Hyeong Kim · Pascal Poupart · Kee-Eung Kim -
2017 : End-to-end Learning for Broad Coverage Semantics: SRL, Coreference, and Beyond »
Luke Zettlemoyer -
2016 Poster: Online Bayesian Moment Matching for Topic Modeling with Unknown Number of Topics »
Wei-Shou Hsu · Pascal Poupart -
2016 Poster: A Unified Approach for Learning the Parameters of Sum-Product Networks »
Han Zhao · Pascal Poupart · Geoffrey Gordon -
2015 Workshop: Machine Learning Systems »
Alex Beutel · Tianqi Chen · Sameer Singh · Elaine Angelino · Markus Weimer · Joseph Gonzalez -
2014 Workshop: 3rd NIPS Workshop on Probabilistic Programming »
Daniel Roy · Josh Tenenbaum · Thomas Dietterich · Stuart J Russell · YI WU · Ulrik R Beierholm · Alp Kucukelbir · Zenna Tavares · Yura Perov · Daniel Lee · Brian Ruttenberg · Sameer Singh · Michael Hughes · Marco Gaboardi · Alexey Radul · Vikash Mansinghka · Frank Wood · Sebastian Riedel · Prakash Panangaden -
2014 Workshop: 4th Workshop on Automated Knowledge Base Construction (AKBC) »
Sameer Singh · Fabian M Suchanek · Sebastian Riedel · Partha Pratim Talukdar · Kevin Murphy · Christopher Ré · William Cohen · Tom Mitchell · Andrew McCallum · Jason E Weston · Ramanathan Guha · Boyan Onyshkevych · Hoifung Poon · Oren Etzioni · Ari Kobren · Arvind Neelakantan · Peter Clark -
2014 Demonstration: A Visual and Interactive IDE for Probabilistic Programming »
Sameer Singh · Luke Hewitt · Tim Rocktäschel · Sebastian Riedel -
2013 Workshop: Big Learning : Advances in Algorithms and Data Management »
Xinghao Pan · Haijie Gu · Joseph Gonzalez · Sameer Singh · Yucheng Low · Joseph Hellerstein · Derek G Murray · Raghu Ramakrishnan · Michael Jordan · Christopher Ré -
2012 Workshop: Big Learning : Algorithms, Systems, and Tools »
Sameer Singh · John Duchi · Yucheng Low · Joseph E Gonzalez -
2011 Workshop: Big Learning: Algorithms, Systems, and Tools for Learning at Scale »
Joseph E Gonzalez · Sameer Singh · Graham Taylor · James Bergstra · Alice Zheng · Misha Bilenko · Yucheng Low · Yoshua Bengio · Michael Franklin · Carlos Guestrin · Andrew McCallum · Alexander Smola · Michael Jordan · Sugato Basu -
2009 Poster: FACTORIE: Probabilistic Programming via Imperatively Defined Factor Graphs »
Andrew McCallum · Karl Schultz · Sameer Singh -
2009 Poster: Training Factor Graphs with Reinforcement Learning for Efficient MAP Inference »
Michael Wick · Khashayar Rohanimanesh · Sameer Singh · Andrew McCallum -
2009 Spotlight: Training Factor Graphs with Reinforcement Learning for Efficient MAP Inference »
Michael Wick · Khashayar Rohanimanesh · Sameer Singh · Andrew McCallum -
2008 Poster: Multi-Agent Filtering with Infinitely Nested Beliefs »
Luke Zettlemoyer · Brian Milch · Leslie Kaelbling -
2008 Spotlight: Multi-Agent Filtering with Infinitely Nested Beliefs »
Luke Zettlemoyer · Brian Milch · Leslie Kaelbling