Timezone: »
Interaction data are identifiable even across long periods of time
Ana-Maria Cretu · Federico Monti · Stefano Marrone · Xiaowen Dong · Michael Bronstein · Yves-Alexandre Montjoye
Event URL: https://openreview.net/forum?id=JA147hzFv-y »
Fine-grained records of people's interactions, both offline and online, are collected at a large scale. These data contain sensitive information about whom we meet, talk to, and when. We demonstrate here how people's interaction behavior is stable over long periods of time and can be used to identify individuals in anonymous datasets. Our attack learns the profile of an individual using geometric deep learning and triplet loss optimization. In a mobile phone metadata dataset of more than 40k people, it correctly identifies 52\% of individuals based on their $2$-hop interaction graph. We further show that the profiles learned by our method are stable over time and that 24\% of people are still identifiable after 20 weeks, thus making identification a real risk in practice. Our results provide strong evidence that disconnected and even re-pseudonymized interaction data can be linked together making them likely to be personal data under the European Union's General Data Protection Regulation.
Fine-grained records of people's interactions, both offline and online, are collected at a large scale. These data contain sensitive information about whom we meet, talk to, and when. We demonstrate here how people's interaction behavior is stable over long periods of time and can be used to identify individuals in anonymous datasets. Our attack learns the profile of an individual using geometric deep learning and triplet loss optimization. In a mobile phone metadata dataset of more than 40k people, it correctly identifies 52\% of individuals based on their $2$-hop interaction graph. We further show that the profiles learned by our method are stable over time and that 24\% of people are still identifiable after 20 weeks, thus making identification a real risk in practice. Our results provide strong evidence that disconnected and even re-pseudonymized interaction data can be linked together making them likely to be personal data under the European Union's General Data Protection Regulation.
Author Information
Ana-Maria Cretu (Imperial College London)
Federico Monti (Twitter)
Stefano Marrone (University of Naples Federico II)
Xiaowen Dong (University of Oxford)
Michael Bronstein (Imperial College London / Twitter)
Yves-Alexandre Montjoye
More from the Same Authors
-
2021 : Adversarial Detection Avoidance Attacks: Evaluating the robustness of perceptual hashing-based client-side scanning »
Shubham Jain · Ana-Maria Cretu · Yves-Alexandre Montjoye -
2022 : On the Unreasonable Effectiveness of Feature Propagation in Learning on Graphs with Missing Node Features »
Emanuele Rossi · Henry Kenlay · Maria Gorinova · Benjamin Chamberlain · Xiaowen Dong · Michael Bronstein -
2022 : Understanding stock market instability via graph auto-encoders »
Dragos Gorduza · Xiaowen Dong · Stefan Zohren -
2021 : GRAND: Graph Neural Diffusion »
Benjamin Chamberlain · James Rowbottom · Maria Gorinova · Stefan Webb · Emanuele Rossi · Michael Bronstein -
2021 : Invited Talk 1: Michael Bronstein: Geometric deep learning for functional protein design »
Michael Bronstein -
2021 Poster: Beltrami Flow and Neural Diffusion on Graphs »
Benjamin Chamberlain · James Rowbottom · Davide Eynard · Francesco Di Giovanni · Xiaowen Dong · Michael Bronstein -
2021 Poster: Learning to Learn Graph Topologies »
Xingyue Pu · Tianyue Cao · Xiaoyun Zhang · Xiaowen Dong · Siheng Chen -
2021 Poster: Adversarial Attacks on Graph Classifiers via Bayesian Optimisation »
Xingchen Wan · Henry Kenlay · Robin Ru · Arno Blaas · Michael A Osborne · Xiaowen Dong -
2021 Poster: Weisfeiler and Lehman Go Cellular: CW Networks »
Cristian Bodnar · Fabrizio Frasca · Nina Otter · Yuguang Wang · Pietro Liò · Guido Montufar · Michael Bronstein -
2021 Poster: Partition and Code: learning how to compress graphs »
Giorgos Bouritsas · Andreas Loukas · Nikolaos Karalias · Michael Bronstein -
2020 : Session 1 | Invited talk: Michael Bronstein, "Geometric Deep Learning for Functional Protein Design" »
Michael Bronstein · Atilim Gunes Baydin -
2020 Poster: Fast geometric learning with symbolic matrices »
Jean Feydy · Alexis Glaunès · Benjamin Charlier · Michael Bronstein -
2020 Spotlight: Fast geometric learning with symbolic matrices »
Jean Feydy · Alexis Glaunès · Benjamin Charlier · Michael Bronstein -
2019 : Poster Session #2 »
Yunzhu Li · Peter Meltzer · Jianing Sun · Guillaume SALHA · Marin Vlastelica Pogančić · Chia-Cheng Liu · Fabrizio Frasca · Marc-Alexandre Côté · Vikas Verma · Abdulkadir CELIKKANAT · Pierluca D'Oro · Priyesh Vijayan · Maria Schuld · Petar Veličković · Kshitij Tayal · Yulong Pei · Hao Xu · Lei Chen · Pengyu Cheng · Ines Chami · Dongkwan Kim · Guilherme Gomes · Lukasz Maziarka · Jessica Hoffmann · Ron Levie · Antonia Gogoglou · Shunwang Gong · Federico Monti · Wenlin Wang · Yan Leng · Salvatore Vivona · Daniel Flam-Shepherd · Chester Holtz · Li Zhang · MAHMOUD KHADEMI · I-Chung Hsieh · Aleksandar Stanić · Ziqiao Meng · Yuhang Jiao -
2017 Poster: Geometric Matrix Completion with Recurrent Multi-Graph Neural Networks »
Federico Monti · Michael Bronstein · Xavier Bresson