Timezone: »
Recent strides in interpretable machine learning (ML) research reveal that models exploit undesirable patterns in the data to make predictions, which potentially causes harms in deployment. However, it is unclear how we can fix these models. We present our ongoing work, GAM Changer, an open-source interactive system to help data scientists and domain experts easily and responsibly edit their Generalized Additive Models (GAMs). With novel visualization techniques, our tool puts interpretability into action—empowering human users to analyze, validate, and align model behaviors with their knowledge and values. Built using modern web technologies, this tool runs locally in users’ computational notebooks or web browsers without requiring extra compute resources, lowering the barrier to creating more responsible ML models. GAM Changer is available at https://r2c-submission.surge.sh.
Author Information
Zijie Jay Wang (Georgia Tech)
Machine Learning PhD student at Georgia Tech, researching the intersection between information visualization and human-centered machine learning.
Harsha Nori (Microsoft)
Duen Horng Chau (Georgia Tech)
Jennifer Wortman Vaughan (Microsoft Research)

Jenn Wortman Vaughan is a Senior Principal Researcher at Microsoft Research, New York City. Her research background is in machine learning and algorithmic economics. She is especially interested in the interaction between people and AI, and has often studied this interaction in the context of prediction markets and other crowdsourcing systems. In recent years, she has turned her attention to human-centered approaches to transparency, interpretability, and fairness in machine learning as part of MSR's FATE group and co-chair of Microsoft’s Aether Working Group on Transparency. Jenn came to MSR in 2012 from UCLA, where she was an assistant professor in the computer science department. She completed her Ph.D. at the University of Pennsylvania in 2009, and subsequently spent a year as a Computing Innovation Fellow at Harvard. She is the recipient of Penn's 2009 Rubinoff dissertation award for innovative applications of computer technology, a National Science Foundation CAREER award, a Presidential Early Career Award for Scientists and Engineers (PECASE), and a handful of best paper awards. In her "spare" time, Jenn is involved in a variety of efforts to provide support for women in computer science; most notably, she co-founded the Annual Workshop for Women in Machine Learning, which has been held each year since 2006.
Rich Caruana (Microsoft)
More from the Same Authors
-
2020 : Accuracy, Interpretability and Differential Privacy via Explainable Boosting »
Harsha Nori -
2021 : A Large-Scale Database for Graph Representation Learning »
Scott Freitas · Yuxiao Dong · Joshua Neil · Duen Horng Chau -
2021 Spotlight: Neural Additive Models: Interpretable Machine Learning with Neural Nets »
Rishabh Agarwal · Levi Melnick · Nicholas Frosst · Xuezhou Zhang · Ben Lengerich · Rich Caruana · Geoffrey Hinton -
2021 : A Search Engine for Discovery of Scientific Challenges and Directions »
Dan Lahav · Jon Saad-Falcon · Duen Horng Chau · Diyi Yang · Eric Horvitz · Daniel Weld · Tom Hope -
2022 : A Universal Abstraction for Hierarchical Hopfield Networks »
Benjamin Hoover · Duen Horng Chau · Hendrik Strobelt · Dmitry Krotov -
2022 : Generation Probabilities are Not Enough: Improving Error Highlighting for AI Code Suggestions »
Helena Vasconcelos · Gagan Bansal · Adam Fourney · Q.Vera Liao · Jennifer Wortman Vaughan -
2022 : Beyond Decision Recommendations: Stop Putting Machine Learning First and Design Human-Centered AI for Decision Support »
Zana Bucinca · Alexandra Chouldechova · Jennifer Wortman Vaughan · Krzysztof Z Gajos -
2022 : A Universal Abstraction for Hierarchical Hopfield Networks »
Benjamin Hoover · Duen Horng Chau · Hendrik Strobelt · Dmitry Krotov -
2023 Poster: Energy-based Attention for Associative Memory »
Benjamin Hoover · Yuchen Liang · Bao Pham · Rameswar Panda · Hendrik Strobelt · Duen Horng Chau · Mohammed Zaki · Dmitry Krotov -
2022 : A Universal Abstraction for Hierarchical Hopfield Networks »
Benjamin Hoover · Duen Horng Chau · Hendrik Strobelt · Dmitry Krotov -
2022 : Panel »
Meena Jagadeesan · Avrim Blum · Jon Kleinberg · Celestine Mendler-Dünner · Jennifer Wortman Vaughan · Chara Podimata -
2021 : Invited talk (ML) - Rich Caruana »
Rich Caruana -
2021 : Fairness:: Assessing Fairness in Practice: AI Teams’ Processes, Challenges, and Needs for Support »
Michael Madaio · Hariharan Subramonyam · Jennifer Wortman Vaughan -
2021 : A Large-Scale Database for Graph Representation Learning »
Scott Freitas · Yuxiao Dong · Joshua Neil · Duen Horng Chau -
2021 Poster: Neural Additive Models: Interpretable Machine Learning with Neural Nets »
Rishabh Agarwal · Levi Melnick · Nicholas Frosst · Xuezhou Zhang · Ben Lengerich · Rich Caruana · Geoffrey Hinton -
2020 : Q & A and Panel Session with Tom Mitchell, Jenn Wortman Vaughan, Sanjoy Dasgupta, and Finale Doshi-Velez »
Tom Mitchell · Jennifer Wortman Vaughan · Sanjoy Dasgupta · Finale Doshi-Velez · Zachary Lipton -
2019 Poster: An Algorithmic Framework For Differentially Private Data Analysis on Trusted Processors »
Janardhan Kulkarni · Olga Ohrimenko · Bolin Ding · Sergey Yekhanin · Joshua Allen · Harsha Nori -
2019 Poster: Efficient Forward Architecture Search »
Hanzhang Hu · John Langford · Rich Caruana · Saurajit Mukherjee · Eric Horvitz · Debadeepta Dey -
2018 : Panel Discussion »
Rich Caruana · Mike Schuster · Ralf Schlüter · Hynek Hermansky · Renato De Mori · Samy Bengio · Michiel Bacchiani · Jason Eisner -
2018 : Rich Caruana, "Friends Don’t Let Friends Deploy Black-Box Models: The Importance of Intelligibility in Machine Learning" »
Rich Caruana -
2018 : Panel on research process »
Zachary Lipton · Charles Sutton · Finale Doshi-Velez · Hanna Wallach · Suchi Saria · Rich Caruana · Thomas Rainforth -
2018 : Rich Caruna - Justice May Be Blind But It Shouldn’t Be Opaque: The Risk of Using Black-Box Models in Healthcare & Criminal Justice »
Rich Caruana -
2018 Workshop: Critiquing and Correcting Trends in Machine Learning »
Thomas Rainforth · Matt Kusner · Benjamin Bloem-Reddy · Brooks Paige · Rich Caruana · Yee Whye Teh -
2017 : Invited Talk 6 »
Rich Caruana -
2017 : The Unfair Externalities of Exploration »
Aleksandrs Slivkins · Jennifer Wortman Vaughan -
2017 : Poster spotlights »
Hiroshi Kuwajima · Masayuki Tanaka · Qingkai Liang · Matthieu Komorowski · Fanyu Que · Thalita F Drumond · Aniruddh Raghu · Leo Anthony Celi · Christina Göpfert · Andrew Ross · Sarah Tan · Rich Caruana · Yin Lou · Devinder Kumar · Graham Taylor · Forough Poursabzi-Sangdeh · Jennifer Wortman Vaughan · Hanna Wallach -
2017 Workshop: Learning in the Presence of Strategic Behavior »
Nika Haghtalab · Yishay Mansour · Tim Roughgarden · Vasilis Syrgkanis · Jennifer Wortman Vaughan -
2017 Symposium: Interpretable Machine Learning »
Andrew Wilson · Jason Yosinski · Patrice Simard · Rich Caruana · William Herlands -
2017 Poster: A Decomposition of Forecast Error in Prediction Markets »
Miro Dudik · Sebastien Lahaie · Ryan Rogers · Jennifer Wortman Vaughan -
2016 : Jennifer Wortman Vaughan: "The Communication Network Within the Crowd" »
Jennifer Wortman Vaughan -
2016 Tutorial: Crowdsourcing: Beyond Label Generation »
Jennifer Wortman Vaughan -
2015 : The risk of deploying unintelligible models in healthcare »
Rich Caruana -
2014 Workshop: NIPS’14 Workshop on Crowdsourcing and Machine Learning »
David Parkes · Denny Zhou · Chien-Ju Ho · Nihar Bhadresh Shah · Adish Singla · Jared Heyman · Edwin Simpson · Andreas Krause · Rafael Frongillo · Jennifer Wortman Vaughan · Panagiotis Papadimitriou · Damien Peters -
2014 Workshop: NIPS Workshop on Transactional Machine Learning and E-Commerce »
David Parkes · David H Wolpert · Jennifer Wortman Vaughan · Jacob D Abernethy · Amos Storkey · Mark Reid · Ping Jin · Nihar Bhadresh Shah · Mehryar Mohri · Luis E Ortiz · Robin Hanson · Aaron Roth · Satyen Kale · Sebastien Lahaie -
2014 Session: Oral Session 9 »
Jennifer Wortman Vaughan -
2014 Poster: Do Deep Nets Really Need to be Deep? »
Jimmy Ba · Rich Caruana -
2013 Workshop: Crowdsourcing: Theory, Algorithms and Applications »
Jennifer Wortman Vaughan · Greg Stoddard · Chien-Ju Ho · Adish Singla · Michael Bernstein · Devavrat Shah · Arpita Ghosh · Evgeniy Gabrilovich · Denny Zhou · Nikhil Devanur · Xi Chen · Alexander Ihler · Qiang Liu · Genevieve Patterson · Ashwinkumar Badanidiyuru Varadaraja · Hossein Azari Soufiani · Jacob Whitehill -
2013 Poster: Using multiple samples to learn mixture models »
Jason D Lee · Ran Gilad-Bachrach · Rich Caruana -
2013 Spotlight: Using multiple samples to learn mixture models »
Jason D Lee · Ran Gilad-Bachrach · Rich Caruana -
2011 Workshop: 2nd Workshop on Computational Social Science and the Wisdom of Crowds »
Winter Mason · Jennifer Wortman Vaughan · Hanna Wallach -
2011 Workshop: Relations between machine learning problems - an approach to unify the field »
Robert Williamson · John Langford · Ulrike von Luxburg · Mark Reid · Jennifer Wortman Vaughan -
2010 Workshop: Computational Social Science and the Wisdom of Crowds »
Jennifer Wortman Vaughan · Hanna Wallach -
2010 Session: Spotlights Session 7 »
Rich Caruana -
2010 Session: Oral Session 8 »
Rich Caruana -
2007 Spotlight: Privacy-Preserving Belief Propagation and Sampling »
Michael Kearns · Jinsong Tan · Jennifer Wortman Vaughan -
2007 Poster: Privacy-Preserving Belief Propagation and Sampling »
Michael Kearns · Jinsong Tan · Jennifer Wortman Vaughan -
2007 Poster: Learning Bounds for Domain Adaptation »
John Blitzer · Yacov Crammer · Alex Kulesza · Fernando Pereira · Jennifer Wortman Vaughan -
2006 Poster: Learning from Multiple Sources »
Yacov Crammer · Michael Kearns · Jennifer Wortman Vaughan