Timezone: »
Understanding and explaining the decisions of neural networks is of great importance, for safe deployment as well as for legal reasons.In this paper, we consider visual explanations for deep image classifiers that are both informative and understandable by humans. Motivated by the recent FullGrad method, we find that bringing information from multiple layers is very effective in producing explanations. Based on this observation, we propose a new method, DeepMaps, that combines information from hidden activities. We show that our method outranks alternative explanations with respect to metrics established in the literature, which are based on pixel perturbations. While these evaluations are based on changes in the class scores, we propose to directly consider the change in the network's decisions. Noting that perturbation-based metrics can fail to distinguish random explanations from sensible ones, we propose to measure the quality of a given explanation by comparing it to explanations for randomly selected other images. We demonstrate through experiments that DeepMaps outperforms existing methods according to the resulting evaluation metrics as well.
Author Information
Agnieszka Grabska-Barwinska (Google DeepMind)
Amal Rannen-Triki (DeepMind)
Omar Rivasplata (IMSS UCL)
My top-level areas of interest are statistical learning theory, machine learning, probability and statistics. These days I am very interested in deep learning and reinforcement learning. I am a Senior Research Fellow at the Department of Statistical Science, University College London. Before my current post I was for a few months at the Department of Mathematics at UCL. Previously I was for a few years at the Department of Computer Science at UCL, where I did research studies in statistical machine learning, sponsored by DeepMind. In parallel with these studies I was a research scientist intern at DeepMind for three years. Back in the day I studied undergraduate maths (BSc 2000, Pontificia Universidad Católica del Perú) and graduate maths (MSc 2005, PhD 2012, University of Alberta). I've lived in Peru, in Canada, and now I'm based in the UK.
András György (DeepMind)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 : Towards Better Visual Explanations for Deep ImageClassifiers »
Dates n/a. Room
More from the Same Authors
-
2021 : Progress in Self-Certified Neural Networks »
Maria Perez-Ortiz · Omar Rivasplata · Emilio Parrado-Hernández · Benjamin Guedj · John Shawe-Taylor -
2022 : Optimistic Meta-Gradients »
Sebastian Flennerhag · Tom Zahavy · Brendan O'Donoghue · Hado van Hasselt · András György · Satinder Singh -
2023 Poster: Optimistic Natural Policy Gradient: a Simple Efficient Policy Optimization Framework for Online RL »
Qinghua Liu · Gellért Weisz · András György · Chi Jin · Csaba Szepesvari -
2023 Poster: Optimistic Meta-Gradients »
Sebastian Flennerhag · Tom Zahavy · Brendan O'Donoghue · Hado van Hasselt · András György · Satinder Singh -
2023 Poster: Online RL in Linearly $q^\pi$-Realizable MDPs Is as Easy as in Linear MDPs If You Learn What to Ignore »
Gellért Weisz · András György · Csaba Szepesvari -
2023 Poster: Revisiting Evaluation Metrics for Semantic Segmentation: Optimization and Evaluation of Fine-grained Intersection over Union »
Zifu Wang · Maxim Berman · Amal Rannen-Triki · Philip Torr · Devis Tuia · Tinne Tuytelaars · Luc V Gool · Jiaqian Yu · Matthew Blaschko -
2023 Oral: Online RL in Linearly $q^\pi$-Realizable MDPs Is as Easy as in Linear MDPs If You Learn What to Ignore »
Gellért Weisz · András György · Csaba Szepesvari -
2022 Poster: Confident Approximate Policy Iteration for Efficient Local Planning in $q^\pi$-realizable MDPs »
Gellért Weisz · András György · Tadashi Kozuno · Csaba Szepesvari -
2021 Poster: On the Role of Optimization in Double Descent: A Least Squares Study »
Ilja Kuzborskij · Csaba Szepesvari · Omar Rivasplata · Amal Rannen-Triki · Razvan Pascanu -
2020 Poster: ImpatientCapsAndRuns: Approximately Optimal Algorithm Configuration from an Infinite Pool »
Gellert Weisz · András György · Wei-I Lin · Devon Graham · Kevin Leyton-Brown · Csaba Szepesvari · Brendan Lucier -
2020 Poster: PAC-Bayes Analysis Beyond the Usual Bounds »
Omar Rivasplata · Ilja Kuzborskij · Csaba Szepesvari · John Shawe-Taylor -
2020 Poster: Logarithmic Pruning is All You Need »
Laurent Orseau · Marcus Hutter · Omar Rivasplata -
2020 Spotlight: Logarithmic Pruning is All You Need »
Laurent Orseau · Marcus Hutter · Omar Rivasplata -
2019 : Break / Poster Session 1 »
Antonia Marcu · Yao-Yuan Yang · Pascale Gourdeau · Chen Zhu · Thodoris Lykouris · Jianfeng Chi · Mark Kozdoba · Arjun Nitin Bhagoji · Xiaoxia Wu · Jay Nandy · Michael T Smith · Bingyang Wen · Yuege Xie · Konstantinos Pitas · Suprosanna Shit · Maksym Andriushchenko · Dingli Yu · Gaël Letarte · Misha Khodak · Hussein Mozannar · Chara Podimata · James Foulds · Yizhen Wang · Huishuai Zhang · Ondrej Kuzelka · Alexander Levine · Nan Lu · Zakaria Mhammedi · Paul Viallard · Diana Cai · Lovedeep Gondara · James Lucas · Yasaman Mahdaviyeh · Aristide Baratin · Rishi Bommasani · Alessandro Barp · Andrew Ilyas · Kaiwen Wu · Jens Behrmann · Omar Rivasplata · Amir Nazemi · Aditi Raghunathan · Will Stephenson · Sahil Singla · Akhil Gupta · YooJung Choi · Yannic Kilcher · Clare Lyle · Edoardo Manino · Andrew Bennett · Zhi Xu · Niladri Chatterji · Emre Barut · Flavien Prost · Rodrigo Toro Icarte · Arno Blaas · Chulhee Yun · Sahin Lale · YiDing Jiang · Tharun Kumar Reddy Medini · Ashkan Rezaei · Alexander Meinke · Stephen Mell · Gary Kazantsev · Shivam Garg · Aradhana Sinha · Vishnu Lokhande · Geovani Rizk · Han Zhao · Aditya Kumar Akash · Jikai Hou · Ali Ghodsi · Matthias Hein · Tyler Sypherd · Yichen Yang · Anastasia Pentina · Pierre Gillot · Antoine Ledent · Guy Gur-Ari · Noah MacAulay · Tianzong Zhang -
2019 Poster: Think out of the "Box": Generically-Constrained Asynchronous Composite Optimization and Hedging »
Pooria Joulani · András György · Csaba Szepesvari -
2019 Poster: Detecting Overfitting via Adversarial Examples »
Roman Werpachowski · András György · Csaba Szepesvari -
2018 Poster: PAC-Bayes bounds for stable algorithms with instance-dependent priors »
Omar Rivasplata · Emilio Parrado-Hernandez · John Shawe-Taylor · Shiliang Sun · Csaba Szepesvari -
2016 Poster: Following the Leader and Fast Rates in Linear Prediction: Curved Constraint Sets and Other Regularities »
Ruitong Huang · Tor Lattimore · András György · Csaba Szepesvari -
2016 Poster: SDP Relaxation with Randomized Rounding for Energy Disaggregation »
Kiarash Shaloudegi · András György · Csaba Szepesvari · Wilsun Xu -
2016 Oral: SDP Relaxation with Randomized Rounding for Energy Disaggregation »
Kiarash Shaloudegi · András György · Csaba Szepesvari · Wilsun Xu -
2015 Poster: Online Learning with Gaussian Payoffs and Side Observations »
Yifan Wu · András György · Csaba Szepesvari -
2013 Poster: Online Learning with Costly Features and Labels »
Navid Zolghadr · Gábor Bartók · Russell Greiner · András György · Csaba Szepesvari -
2010 Spotlight: Online Markov Decision Processes under Bandit Feedback »
Gergely Neu · András György · András Antos · Csaba Szepesvari -
2010 Poster: Online Markov Decision Processes under Bandit Feedback »
Gergely Neu · András György · Csaba Szepesvari · András Antos