Timezone: »
Variational inference has recently emerged as a popular alternative to Markov chain Monte Carlo (MCMC) in large-scale Bayesian inference. A core idea of variational inference is to trade statistical accuracy for computational efficiency. It aims to approximate the posterior, as opposed to targeting the exact posterior as in MCMC. Approximating the exact posterior by a restricted inferential model (a.k.a. variational approximating family) reduces computation costs but sacrifices its statistical accuracy. In this work, we develop a theoretical characterization of this statistical-computational tradeoff in variational inference. We focus on a case study of Bayesian linear regression using inferential models (a.k.a. variational approximating families) with different degrees of flexibility. From a computational perspective, we find that less flexible variational families speed up computation. They reduce the variance in stochastic optimization and in turn, accelerate convergence. From a statistical perspective, however, we find that less flexible families suffer in approximation quality, but provide better statistical generalization. This is joint work with Kush Bhatia, Nikki Kuang, and Yi-an Ma.
Speaker Bio: Yixin Wang is an LSA Collegiate Fellow in Statistics at the University of Michigan. She works in the fields of Bayesian statistics, machine learning, and causal inference. Previously, she was a postdoctoral researcher with Professor Michael Jordan at the University of California, Berkeley. She completed her PhD in statistics at Columbia, advised by Professor David Blei, and her undergraduate studies in mathematics and computer science at the Hong Kong University of Science and Technology. Her research has received several awards, including the INFORMS data mining best paper award, Blackwell-Rosenbluth Award from the junior section of ISBA, student paper awards from ASA Biometrics Section and Bayesian Statistics Section, and the ICSA conference young researcher award.
Author Information
Yixin Wang (Columbia University)
More from the Same Authors
-
2021 Spotlight: Learning Equilibria in Matching Markets from Bandit Feedback »
Meena Jagadeesan · Alexander Wei · Yixin Wang · Michael Jordan · Jacob Steinhardt -
2021 : Desiderata for Representation Learning: A Causal Perspective »
Yixin Wang · Michael Jordan -
2022 : A Bayesian Causal Inference Approach for Assessing Fairness in Clinical Decision-Making »
Linying Zhang · Lauren Richter · Yixin Wang · Anna Ostropolets · Noemie Elhadad · David Blei · George Hripcsak -
2022 : Valid Inference after Causal Discovery »
Paula Gradu · Tijana Zrnic · Yixin Wang · Michael Jordan -
2022 : Interventional Causal Representation Learning »
Kartik Ahuja · Yixin Wang · Divyat Mahajan · Yoshua Bengio -
2022 : Interventional Causal Representation Learning »
Kartik Ahuja · Yixin Wang · Divyat Mahajan · Yoshua Bengio -
2022 : Interventional Causal Representation Learning »
Kartik Ahuja · Yixin Wang · Divyat Mahajan · Yoshua Bengio -
2022 Workshop: Learning Meaningful Representations of Life »
Elizabeth Wood · Adji Bousso Dieng · Aleksandrina Goeva · Alex X Lu · Anshul Kundaje · Chang Liu · Debora Marks · Ed Boyden · Eli N Weinstein · Lorin Crawford · Mor Nitzan · Rebecca Boiarsky · Romain Lopez · Tamara Broderick · Ray Jones · Wouter Boomsma · Yixin Wang · Stephen Ra -
2022 : Dynamic Survival Transformers for Causal Inference with Electronic Health Records »
Prayag Chatha · Yixin Wang · Zhenke Wu · Jeffrey Regier -
2022 : Dynamic Survival Transformers for Causal Inference with Electronic Health Records »
Prayag Chatha · Yixin Wang · Zhenke Wu · Jeffrey Regier -
2022 Poster: Anticipating Performativity by Predicting from Predictions »
Celestine Mendler-Dünner · Frances Ding · Yixin Wang -
2022 Poster: Empirical Gateaux Derivatives for Causal Inference »
Michael Jordan · Yixin Wang · Angela Zhou -
2021 : Invited Talk 6 Q&A »
Yixin Wang -
2021 Workshop: Learning Meaningful Representations of Life (LMRL) »
Elizabeth Wood · Adji Bousso Dieng · Aleksandrina Goeva · Anshul Kundaje · Barbara Engelhardt · Chang Liu · David Van Valen · Debora Marks · Edward Boyden · Eli N Weinstein · Lorin Crawford · Mor Nitzan · Romain Lopez · Tamara Broderick · Ray Jones · Wouter Boomsma · Yixin Wang -
2021 Poster: Posterior Collapse and Latent Variable Non-identifiability »
Yixin Wang · David Blei · John Cunningham -
2021 Poster: Learning Equilibria in Matching Markets from Bandit Feedback »
Meena Jagadeesan · Alexander Wei · Yixin Wang · Michael Jordan · Jacob Steinhardt -
2020 Workshop: Learning Meaningful Representations of Life (LMRL.org) »
Elizabeth Wood · Debora Marks · Ray Jones · Adji Bousso Dieng · Alan Aspuru-Guzik · Anshul Kundaje · Barbara Engelhardt · Chang Liu · Edward Boyden · Kresten Lindorff-Larsen · Mor Nitzan · Smita Krishnaswamy · Wouter Boomsma · Yixin Wang · David Van Valen · Orr Ashenberg -
2020 Poster: Point process models for sequence detection in high-dimensional neural spike trains »
Alex Williams · Anthony Degleris · Yixin Wang · Scott Linderman -
2020 Oral: Point process models for sequence detection in high-dimensional neural spike trains »
Alex Williams · Anthony Degleris · Yixin Wang · Scott Linderman -
2019 Poster: Variational Bayes under Model Misspecification »
Yixin Wang · David Blei -
2019 Poster: Using Embeddings to Correct for Unobserved Confounding in Networks »
Victor Veitch · Yixin Wang · David Blei