Timezone: »
Modeling fire spread is critical in fire risk management. Creating data-driven models to forecast spread remains challenging due to the lack of comprehensive data sources that relate fires with relevant covariates. We present the first comprehensive and open-source dataset that relates historical fire data with relevant covariates such as weather, vegetation, and topography. Our dataset, named WildfireDB, contains over 17 million data points that capture how fires spread in continental USA in the last decade. In this paper, we describe the algorithmic approach used to process and integrate the data, describe the dataset, and present benchmark results regarding data-driven models that can be learned to forecast the spread of wildfires.
Author Information
Samriddhi Singla (University of California, Riverside)
Ayan Mukhopadhyay (Vanderbilt University)
Michael Wilbur (None)
Tina Diao (Stanford University)
Vinayak Gajjewar
Ahmed Eldawy (University of California, Riverside)
Mykel J Kochenderfer (Stanford University)
Ross Shachter (Stanford University)
Abhishek Dubey (Vanderbilt University)
More from the Same Authors
-
2021 Poster: Evidential Softmax for Sparse Multimodal Distributions in Deep Generative Models »
Phil Chen · Mikhal Itkina · Ransalu Senanayake · Mykel J Kochenderfer -
2021 : Reconnaissance Blind Chess + Q&A »
Ryan Gardner · Gino Perrotta · Corey Lowman · Casey Richardson · Andrew Newman · Jared Markowitz · Nathan Drenkow · Bart Paulhamus · Ashley J Llorens · Todd Neller · Raman Arora · Bo Li · Mykel J Kochenderfer -
2020 : WildfireDB: A Spatio-Temporal Dataset Combining Wildfire Occurrence with Relevant Covariates »
Samriddhi Singla · Tina Diao -
2020 Poster: Handling Missing Data with Graph Representation Learning »
Jiaxuan You · Xiaobai Ma · Yi Ding · Mykel J Kochenderfer · Jure Leskovec -
2020 Poster: Evidential Sparsification of Multimodal Latent Spaces in Conditional Variational Autoencoders »
Mikhal Itkina · Boris Ivanovic · Ransalu Senanayake · Mykel J Kochenderfer · Marco Pavone -
2020 Poster: Provably Efficient Reward-Agnostic Navigation with Linear Value Iteration »
Andrea Zanette · Alessandro Lazaric · Mykel J Kochenderfer · Emma Brunskill -
2019 Poster: Almost Horizon-Free Structure-Aware Best Policy Identification with a Generative Model »
Andrea Zanette · Mykel J Kochenderfer · Emma Brunskill -
2019 Poster: Limiting Extrapolation in Linear Approximate Value Iteration »
Andrea Zanette · Alessandro Lazaric · Mykel J Kochenderfer · Emma Brunskill -
2018 Poster: Deep Dynamical Modeling and Control of Unsteady Fluid Flows »
Jeremy Morton · Antony Jameson · Mykel J Kochenderfer · Freddie Witherden -
2018 Poster: Amortized Inference Regularization »
Rui Shu · Hung Bui · Shengjia Zhao · Mykel J Kochenderfer · Stefano Ermon -
2016 : Building and Validating the AI behind the Next-Generation Aircraft Collision Avoidance System »
Mykel J Kochenderfer