Timezone: »
Graph generation has shown great potential in applications like network design and mobility synthesis and is one of the fastest-growing domains in machine learning for graphs. Despite the success of graph generation, the corresponding real-world datasets are few and limited to areas such as molecules and citation networks. To fill the gap, we introduce GraphGT, a large dataset collection for graph generation and transformation problem, which contains 36 datasets from 9 domains across 6 subjects. To assist the researchers with better explorations of the datasets, we provide a systemic review and classification of the datasets based on research tasks, graph types, and application domains. We have significantly (re)processed all the data from different domains to fit the unified framework of graph generation and transformation problems. In addition, GraphGT provides an easy-to-use graph generation pipeline that simplifies the process for graph data loading, experimental setup and model evaluation. Finally, we compare the performance of popular graph generative models in 16 graph generation and 17 graph transformation datasets, showing the great power of GraphGT in differentiating and evaluating model capabilities and drawbacks. GraphGT has been regularly updated and welcomes inputs from the community. GraphGT is publicly available at \url{https://graphgt.github.io/} and can also be accessed via an open Python library.
Author Information
Yuanqi Du (George Mason University)
Shiyu Wang (Emory University)
Shiyu is currently a PhD candidate in Biostatistics at the Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University. He is honored to be advised by Dr. Liang Zhao and Dr. Zhaohui (Steve) Qin, working on deep generative models and graph neural networks.
Xiaojie Guo (JD.COM Silicon Valley Research Center)
Hengning Cao (George Mason University)
Shujie Hu (Emory University)
Junji Jiang (Tianjin University)
Aishwarya Varala (George Mason University)
Abhinav Angirekula (Thomas Jefferson High School for Science and Technology)
Liang Zhao (George Mason University)
More from the Same Authors
-
2021 : Learning Disentangled Representation for Spatiotemporal Graph Generation »
Yuanqi Du · Xiaojie Guo · Hengning Cao · Yanfang (Fa Ye · Liang Zhao -
2021 : GraphGT: Machine Learning Datasets for Graph Generation and Transformation »
Yuanqi Du · Shiyu Wang · Xiaojie Guo · Hengning Cao · Shujie Hu · Junji Jiang · Aishwarya Varala · Abhinav Angirekula · Liang Zhao -
2021 : Physics-Augmented Learning: A New Paradigm Beyond Physics-Informed Learning »
Ziming Liu · Yuanqi Du · Yunyue Chen · Max Tegmark -
2021 : Learning Disentangled Representation for Spatiotemporal Graph Generation »
Yuanqi Du · Xiaojie Guo · Hengning Cao · Yanfang (Fa Ye · Liang Zhao -
2022 : GAUCHE: A Library for Gaussian Processes in Chemistry »
Ryan-Rhys Griffiths · Leo Klarner · Henry Moss · Aditya Ravuri · Sang Truong · Bojana Rankovic · Yuanqi Du · Arian Jamasb · Julius Schwartz · Austin Tripp · Gregory Kell · Anthony Bourached · Alex Chan · Jacob Moss · Chengzhi Guo · Alpha Lee · Philippe Schwaller · Jian Tang -
2022 : PIPS: Path Integral Stochastic Optimal Control for Path Sampling in Molecular Dynamics »
Lars Holdijk · Yuanqi Du · Ferry Hooft · Priyank Jaini · Berend Ensing · Max Welling -
2022 : ChemSpacE: Interpretable and Interactive Chemical Space Exploration »
Yuanqi Du · Xian Liu · Nilay Shah · Shengchao Liu · Jieyu Zhang · Bolei Zhou -
2022 : Structure-based Drug Design with Equivariant Diffusion Models »
Arne Schneuing · Yuanqi Du · Charles Harris · Arian Jamasb · Ilia Igashov · weitao Du · Tom Blundell · Pietro Lió · Carla Gomes · Max Welling · Michael Bronstein · Bruno Correia -
2022 : Improving Molecular Pretraining with Complementary Featurizations »
Yanqiao Zhu · Dingshuo Chen · Yuanqi Du · Yingze Wang · Qiang Liu · Shu Wu -
2022 Poster: Deep Generative Model for Periodic Graphs »
Shiyu Wang · Xiaojie Guo · Liang Zhao -
2022 Poster: Multi-objective Deep Data Generation with Correlated Property Control »
Shiyu Wang · Xiaojie Guo · Xuanyang Lin · Bo Pan · Yuanqi Du · Yinkai Wang · Yanfang Ye · Ashley Petersen · Austin Leitgeb · Saleh Alkhalifa · Kevin Minbiole · William M. Wuest · Amarda Shehu · Liang Zhao -
2021 Workshop: AI for Science: Mind the Gaps »
Payal Chandak · Yuanqi Du · Tianfan Fu · Wenhao Gao · Kexin Huang · Shengchao Liu · Ziming Liu · Gabriel Spadon · Max Tegmark · Hanchen Wang · Adrian Weller · Max Welling · Marinka Zitnik -
2021 Poster: Representation Learning on Spatial Networks »
Zheng Zhang · Liang Zhao