Timezone: »
RobustBench: a standardized adversarial robustness benchmark
Francesco Croce · Maksym Andriushchenko · Vikash Sehwag · Edoardo Debenedetti · Nicolas Flammarion · Mung Chiang · Prateek Mittal · Matthias Hein
As a research community, we are still lacking a systematic understanding of the progress on adversarial robustness which often makes it hard to identify the most promising ideas in training robust models. A key challenge in benchmarking robustness is that its evaluation is often error-prone leading to robustness overestimation. Our goal is to establish a standardized benchmark of adversarial robustness, which as accurately as possible reflects the robustness of the considered models within a reasonable computational budget. To this end, we start by considering the image classification task and introduce restrictions (possibly loosened in the future) on the allowed models. We evaluate adversarial robustness with AutoAttack, an ensemble of white- and black-box attacks, which was recently shown in a large-scale study to improve almost all robustness evaluations compared to the original publications. To prevent overadaptation of new defenses to AutoAttack, we welcome external evaluations based on adaptive attacks, especially where AutoAttack flags a potential overestimation of robustness. Our leaderboard, hosted at https://robustbench.github.io/, contains evaluations of 120+ models and aims at reflecting the current state of the art in image classification on a set of well-defined tasks in $\ell_\infty$- and $\ell_2$-threat models and on common corruptions, with possible extensions in the future. Additionally, we open-source the library https://github.com/RobustBench/robustbench that provides unified access to 80+ robust models to facilitate their downstream applications. Finally, based on the collected models, we analyze the impact of robustness on the performance on distribution shifts, calibration, out-of-distribution detection, fairness, privacy leakage, smoothness, and transferability.
Author Information
Francesco Croce (University of Tübingen)
Maksym Andriushchenko (EPFL)
Vikash Sehwag (Princeton University)
I work on research problems at the intersection of Security, Privacy, and Machine Learning.
Edoardo Debenedetti (EPFL)
MSc in Computer Science student at EPFL, interested in Trustworthy and Robust ML.
Nicolas Flammarion (EPFL)
Mung Chiang (Purdue University)
Prateek Mittal (Princeton University)
Matthias Hein (University of Tübingen)
More from the Same Authors
-
2021 Spotlight: Sequential Algorithms for Testing Closeness of Distributions »
Aadil Oufkir · Omar Fawzi · Nicolas Flammarion · Aurélien Garivier -
2021 Spotlight: An Infinite-Feature Extension for Bayesian ReLU Nets That Fixes Their Asymptotic Overconfidence »
Agustinus Kristiadi · Matthias Hein · Philipp Hennig -
2021 : A Novel Self-Distillation Architecture to Defeat Membership Inference Attacks »
Xinyu Tang · Saeed Mahloujifar · Liwei Song · Virat Shejwalkar · Amir Houmansadr · Prateek Mittal -
2021 : Being a Bit Frequentist Improves Bayesian Neural Networks »
Agustinus Kristiadi · Matthias Hein · Philipp Hennig -
2022 : Lower Bounds on 0-1 Loss for Multi-class Classification with a Test-time Attacker »
Sihui Dai · Wenxin Ding · Arjun Nitin Bhagoji · Daniel Cullina · Prateek Mittal · Ben Zhao -
2022 Poster: Diffusion Visual Counterfactual Explanations »
Maximilian Augustin · Valentyn Boreiko · Francesco Croce · Matthias Hein -
2022 Poster: Formulating Robustness Against Unforeseen Attacks »
Sihui Dai · Saeed Mahloujifar · Prateek Mittal -
2022 Poster: Understanding Robust Learning through the Lens of Representation Similarities »
Christian Cianfarani · Arjun Nitin Bhagoji · Vikash Sehwag · Ben Zhao · Heather Zheng · Prateek Mittal -
2022 Poster: Renyi Differential Privacy of Propose-Test-Release and Applications to Private and Robust Machine Learning »
Jiachen T. Wang · Saeed Mahloujifar · Shouda Wang · Ruoxi Jia · Prateek Mittal -
2021 Poster: Implicit Bias of SGD for Diagonal Linear Networks: a Provable Benefit of Stochasticity »
Scott Pesme · Loucas Pillaud-Vivien · Nicolas Flammarion -
2021 Poster: Last iterate convergence of SGD for Least-Squares in the Interpolation regime. »
Aditya Vardhan Varre · Loucas Pillaud-Vivien · Nicolas Flammarion -
2021 Poster: Sequential Algorithms for Testing Closeness of Distributions »
Aadil Oufkir · Omar Fawzi · Nicolas Flammarion · Aurélien Garivier -
2021 Oral: Continuized Accelerations of Deterministic and Stochastic Gradient Descents, and of Gossip Algorithms »
Mathieu Even · Raphaël Berthier · Francis Bach · Nicolas Flammarion · Hadrien Hendrikx · Pierre Gaillard · Laurent Massoulié · Adrien Taylor -
2021 Poster: Continuized Accelerations of Deterministic and Stochastic Gradient Descents, and of Gossip Algorithms »
Mathieu Even · Raphaël Berthier · Francis Bach · Nicolas Flammarion · Hadrien Hendrikx · Pierre Gaillard · Laurent Massoulié · Adrien Taylor -
2021 Poster: An Infinite-Feature Extension for Bayesian ReLU Nets That Fixes Their Asymptotic Overconfidence »
Agustinus Kristiadi · Matthias Hein · Philipp Hennig -
2021 Poster: Meta-Learning the Search Distribution of Black-Box Random Search Based Adversarial Attacks »
Maksym Yatsura · Jan Metzen · Matthias Hein -
2020 Poster: HYDRA: Pruning Adversarially Robust Neural Networks »
Vikash Sehwag · Shiqi Wang · Prateek Mittal · Suman Jana -
2019 Poster: Lower Bounds on Adversarial Robustness from Optimal Transport »
Arjun Nitin Bhagoji · Daniel Cullina · Prateek Mittal -
2018 Poster: Gen-Oja: Simple & Efficient Algorithm for Streaming Generalized Eigenvector Computation »
Kush Bhatia · Aldo Pacchiano · Nicolas Flammarion · Peter Bartlett · Michael Jordan -
2018 Poster: PAC-learning in the presence of adversaries »
Daniel Cullina · Arjun Nitin Bhagoji · Prateek Mittal -
2017 : Poster Spotlights I »
Taesik Na · Yang Song · Aman Sinha · Richard Shin · Qiuyuan Huang · Nina Narodytska · Matt Staib · Kexin Pei · Fnu Suya · Amirata Ghorbani · Jacob Buckman · Matthias Hein · Huan Zhang · Yanjun Qi · Yuan Tian · Min Du · Dimitris Tsipras -
2017 Poster: Formal Guarantees on the Robustness of a Classifier against Adversarial Manipulation »
Matthias Hein · Maksym Andriushchenko -
2016 Poster: Clustering Signed Networks with the Geometric Mean of Laplacians »
Pedro Mercado · Francesco Tudisco · Matthias Hein -
2016 Poster: Globally Optimal Training of Generalized Polynomial Neural Networks with Nonlinear Spectral Methods »
Antoine Gautier · Quynh Nguyen · Matthias Hein -
2015 Poster: Efficient Output Kernel Learning for Multiple Tasks »
Pratik Kumar Jawanpuria · Maksim Lapin · Matthias Hein · Bernt Schiele -
2015 Poster: Top-k Multiclass SVM »
Maksim Lapin · Matthias Hein · Bernt Schiele -
2015 Spotlight: Top-k Multiclass SVM »
Maksim Lapin · Matthias Hein · Bernt Schiele -
2015 Poster: Regularization-Free Estimation in Trace Regression with Symmetric Positive Semidefinite Matrices »
Martin Slawski · Ping Li · Matthias Hein -
2014 Poster: Tight Continuous Relaxation of the Balanced k-Cut Problem »
Syama Sundar Rangapuram · Pramod Kaushik Mudrakarta · Matthias Hein -
2013 Poster: The Total Variation on Hypergraphs - Learning on Hypergraphs Revisited »
Matthias Hein · Simon Setzer · Leonardo Jost · Syama Sundar Rangapuram -
2013 Spotlight: The Total Variation on Hypergraphs - Learning on Hypergraphs Revisited »
Matthias Hein · Simon Setzer · Leonardo Jost · Syama Sundar Rangapuram -
2013 Poster: Matrix factorization with binary components »
Martin Slawski · Matthias Hein · Pavlo Lutsik -
2013 Spotlight: Matrix factorization with binary components »
Martin Slawski · Matthias Hein · Pavlo Lutsik -
2011 Poster: Sparse recovery by thresholded non-negative least squares »
Martin Slawski · Matthias Hein -
2011 Poster: Beyond Spectral Clustering - Tight Relaxations of Balanced Graph Cuts »
Matthias Hein · Simon Setzer -
2010 Poster: An Inverse Power Method for Nonlinear Eigenproblems with Applications in 1-Spectral Clustering and Sparse PCA »
Matthias Hein · Thomas Bühler -
2010 Spotlight: Getting lost in space: Large sample analysis of the resistance distance »
Ulrike von Luxburg · Agnes Radl · Matthias Hein -
2010 Poster: Getting lost in space: Large sample analysis of the resistance distance »
Ulrike von Luxburg · Agnes Radl · Matthias Hein -
2009 Poster: Semi-supervised Regression using Hessian energy with an application to semi-supervised dimensionality reduction »
Kwang In Kim · Florian Steinke · Matthias Hein -
2009 Poster: Robust Nonparametric Regression with Metric-Space Valued Output »
Matthias Hein -
2008 Poster: Non-parametric Regression Between Manifolds »
Florian Steinke · Matthias Hein -
2008 Poster: Influence of graph construction on graph-based clustering measures »
Markus M Maier · Ulrike von Luxburg · Matthias Hein -
2008 Oral: Influence of graph construction on graph-based clustering measures »
Markus M Maier · Ulrike von Luxburg · Matthias Hein -
2006 Poster: Manifold Denoising »
Matthias Hein · Markus M Maier -
2006 Talk: Manifold Denoising »
Matthias Hein · Markus M Maier