Timezone: »
Continual learning (CL) is widely regarded as crucial challenge for lifelong AI. However, existing CL benchmarks, e.g. Permuted-MNIST and Split-CIFAR, make use of artificial temporal variation and do not align with or generalize to the real- world. In this paper, we introduce CLEAR, the first continual image classification benchmark dataset with a natural temporal evolution of visual concepts in the real world that spans a decade (2004-2014). We build CLEAR from existing large-scale image collections (YFCC100M) through a novel and scalable low-cost approach to visio-linguistic dataset curation. Our pipeline makes use of pretrained vision-language models (e.g. CLIP) to interactively build labeled datasets, which are further validated with crowd-sourcing to remove errors and even inappropriate images (hidden in original YFCC100M). The major strength of CLEAR over prior CL benchmarks is the smooth temporal evolution of visual concepts with real-world imagery, including both high-quality labeled data along with abundant unlabeled samples per time period for continual semi-supervised learning. We find that a simple unsupervised pre-training step can already boost state-of-the-art CL algorithms that only utilize fully-supervised data. Our analysis also reveals that mainstream CL evaluation protocols that train and test on iid data artificially inflate performance of CL system. To address this, we propose novel "streaming" protocols for CL that always test on the (near) future. Interestingly, streaming protocols (a) can simplify dataset curation since today’s testset can be repurposed for tomorrow’s trainset and (b) can produce more generalizable models with more accurate estimates of performance since all labeled data from each time-period is used for both training and testing (unlike classic iid train-test splits).
Author Information
Zhiqiu Lin (Carnegie Mellon University)
Jia Shi (Carnegie Mellon University)
Deepak Pathak (Carnegie Mellon University)
Deva Ramanan (Carnegie Mellon University)
More from the Same Authors
-
2021 Spotlight: ViSER: Video-Specific Surface Embeddings for Articulated 3D Shape Reconstruction »
Gengshan Yang · Deqing Sun · Varun Jampani · Daniel Vlasic · Forrester Cole · Ce Liu · Deva Ramanan -
2021 : Argoverse 2: Next Generation Datasets for Self-Driving Perception and Forecasting »
Benjamin Wilson · William Qi · Tanmay Agarwal · John Lambert · Jagjeet Singh · Siddhesh Khandelwal · Bowen Pan · Ratnesh Kumar · Andrew Hartnett · Jhony Kaesemodel Pontes · Deva Ramanan · Peter Carr · James Hays -
2021 : RB2: Robotic Manipulation Benchmarking with a Twist »
Sudeep Dasari · Jianren Wang · Joyce Hong · Shikhar Bahl · Yixin Lin · Austin Wang · Abitha Thankaraj · Karanbir Chahal · Berk Calli · Saurabh Gupta · David Held · Lerrel Pinto · Deepak Pathak · Vikash Kumar · Abhinav Gupta -
2021 : Accelerating Robotic Reinforcement Learning via Parameterized Action Primitives »
Murtaza Dalal · Deepak Pathak · Russ Salakhutdinov -
2022 : Test-time adaptation with slot-centric models »
Mihir Prabhudesai · Sujoy Paul · Sjoerd van Steenkiste · Mehdi S. M. Sajjadi · Anirudh Goyal · Deepak Pathak · Katerina Fragkiadaki · Gaurav Aggarwal · Thomas Kipf -
2022 : Test-time adaptation with slot-centric models »
Mihir Prabhudesai · Sujoy Paul · Sjoerd van Steenkiste · Mehdi S. M. Sajjadi · Anirudh Goyal · Deepak Pathak · Katerina Fragkiadaki · Gaurav Aggarwal · Thomas Kipf -
2022 Poster: Continual Learning with Evolving Class Ontologies »
Zhiqiu Lin · Deepak Pathak · Yu-Xiong Wang · Deva Ramanan · Shu Kong -
2022 Poster: Learning to Discover and Detect Objects »
Vladimir Fomenko · Ismail Elezi · Deva Ramanan · Laura Leal-Taixé · Aljosa Osep -
2021 Oral: Interesting Object, Curious Agent: Learning Task-Agnostic Exploration »
Simone Parisi · Victoria Dean · Deepak Pathak · Abhinav Gupta -
2021 Poster: Accelerating Robotic Reinforcement Learning via Parameterized Action Primitives »
Murtaza Dalal · Deepak Pathak · Russ Salakhutdinov -
2021 Poster: Discovering and Achieving Goals via World Models »
Russell Mendonca · Oleh Rybkin · Kostas Daniilidis · Danijar Hafner · Deepak Pathak -
2021 Poster: Functional Regularization for Reinforcement Learning via Learned Fourier Features »
Alex Li · Deepak Pathak -
2021 Poster: ViSER: Video-Specific Surface Embeddings for Articulated 3D Shape Reconstruction »
Gengshan Yang · Deqing Sun · Varun Jampani · Daniel Vlasic · Forrester Cole · Ce Liu · Deva Ramanan -
2021 Poster: Interesting Object, Curious Agent: Learning Task-Agnostic Exploration »
Simone Parisi · Victoria Dean · Deepak Pathak · Abhinav Gupta -
2021 Poster: NeRS: Neural Reflectance Surfaces for Sparse-view 3D Reconstruction in the Wild »
Jason Zhang · Gengshan Yang · Shubham Tulsiani · Deva Ramanan -
2020 Poster: Neural Dynamic Policies for End-to-End Sensorimotor Learning »
Shikhar Bahl · Mustafa Mukadam · Abhinav Gupta · Deepak Pathak -
2020 Spotlight: Neural Dynamic Policies for End-to-End Sensorimotor Learning »
Shikhar Bahl · Mustafa Mukadam · Abhinav Gupta · Deepak Pathak -
2020 Session: Orals & Spotlights Track 14: Reinforcement Learning »
Deepak Pathak · Martha White -
2020 Poster: Sparse Graphical Memory for Robust Planning »
Scott Emmons · Ajay Jain · Misha Laskin · Thanard Kurutach · Pieter Abbeel · Deepak Pathak -
2019 Poster: Volumetric Correspondence Networks for Optical Flow »
Gengshan Yang · Deva Ramanan -
2017 Poster: Learning to Model the Tail »
Yu-Xiong Wang · Deva Ramanan · Martial Hebert -
2017 Poster: Attentional Pooling for Action Recognition »
Rohit Girdhar · Deva Ramanan