Timezone: »
Adversarial attacks on graphs have posed a major threat to the robustness of graph machine learning (GML) models. Naturally, there is an ever-escalating arms race between attackers and defenders. However, the strategies behind both sides are often not fairly compared under the same and realistic conditions. To bridge this gap, we present the Graph Robustness Benchmark (GRB) with the goal of providing a scalable, unified, modular, and reproducible evaluation for the adversarial robustness of GML models. GRB standardizes the process of attacks and defenses by 1) developing scalable and diverse datasets, 2) modularizing the attack and defense implementations, and 3) unifying the evaluation protocol in refined scenarios. By leveraging the modular GRB pipeline, the end-users can focus on the development of robust GML models with automated data processing and experimental evaluations. To support open and reproducible research on graph adversarial learning, GRB also hosts public leaderboards for different scenarios. As a starting point, we provide various baseline experiments to benchmark the state-of-the-art techniques. GRB is an open-source benchmark and all datasets, code, and leaderboards are available at https://cogdl.ai/grb/home.
Author Information
Qinkai Zheng (Tsinghua University)
Xu Zou (Tsinghua University, Tsinghua University)
Yuxiao Dong (Tsinghua University)
Yukuo Cen (Tsinghua University)
Da Yin (Tsinghua University, Tsinghua University)
Jiarong Xu (Fudan University)
Yang Yang
Jie Tang (Tsinghua University)
More from the Same Authors
-
2021 : A Large-Scale Database for Graph Representation Learning »
Scott Freitas · Yuxiao Dong · Joshua Neil · Duen Horng Chau -
2021 : OGB-LSC: A Large-Scale Challenge for Machine Learning on Graphs »
Weihua Hu · Matthias Fey · Hongyu Ren · Maho Nakata · Yuxiao Dong · Jure Leskovec -
2022 Poster: DGraph: A Large-Scale Financial Dataset for Graph Anomaly Detection »
Xuanwen Huang · Yang Yang · Yang Wang · Chunping Wang · Zhisheng Zhang · Jiarong Xu · Lei Chen · Michalis Vazirgiannis -
2022 Spotlight: DGraph: A Large-Scale Financial Dataset for Graph Anomaly Detection »
Xuanwen Huang · Yang Yang · Yang Wang · Chunping Wang · Zhisheng Zhang · Jiarong Xu · Lei Chen · Michalis Vazirgiannis -
2022 Poster: CogView2: Faster and Better Text-to-Image Generation via Hierarchical Transformers »
Ming Ding · Wendi Zheng · Wenyi Hong · Jie Tang -
2021 : Invited talk 3 »
Jie Tang -
2021 Poster: Adaptive Diffusion in Graph Neural Networks »
Jialin Zhao · Yuxiao Dong · Ming Ding · Evgeny Kharlamov · Jie Tang -
2021 Poster: CogView: Mastering Text-to-Image Generation via Transformers »
Ming Ding · Zhuoyi Yang · Wenyi Hong · Wendi Zheng · Chang Zhou · Da Yin · Junyang Lin · Xu Zou · Zhou Shao · Hongxia Yang · Jie Tang -
2021 : A Large-Scale Database for Graph Representation Learning »
Scott Freitas · Yuxiao Dong · Joshua Neil · Duen Horng Chau -
2021 Poster: UFC-BERT: Unifying Multi-Modal Controls for Conditional Image Synthesis »
Zhu Zhang · Jianxin Ma · Chang Zhou · Rui Men · Zhikang Li · Ming Ding · Jie Tang · Jingren Zhou · Hongxia Yang -
2021 Poster: A Hierarchical Reinforcement Learning Based Optimization Framework for Large-scale Dynamic Pickup and Delivery Problems »
Yi Ma · Xiaotian Hao · Jianye Hao · Jiawen Lu · Xing Liu · Tong Xialiang · Mingxuan Yuan · Zhigang Li · Jie Tang · Zhaopeng Meng -
2020 Poster: Open Graph Benchmark: Datasets for Machine Learning on Graphs »
Weihua Hu · Matthias Fey · Marinka Zitnik · Yuxiao Dong · Hongyu Ren · Bowen Liu · Michele Catasta · Jure Leskovec -
2020 Spotlight: Open Graph Benchmark: Datasets for Machine Learning on Graphs »
Weihua Hu · Matthias Fey · Marinka Zitnik · Yuxiao Dong · Hongyu Ren · Bowen Liu · Michele Catasta · Jure Leskovec -
2020 Poster: Graph Random Neural Networks for Semi-Supervised Learning on Graphs »
Wenzheng Feng · Jie Zhang · Yuxiao Dong · Yu Han · Huanbo Luan · Qian Xu · Qiang Yang · Evgeny Kharlamov · Jie Tang -
2020 Oral: Graph Random Neural Networks for Semi-Supervised Learning on Graphs »
Wenzheng Feng · Jie Zhang · Yuxiao Dong · Yu Han · Huanbo Luan · Qian Xu · Qiang Yang · Evgeny Kharlamov · Jie Tang -
2020 Poster: A Matrix Chernoff Bound for Markov Chains and Its Application to Co-occurrence Matrices »
Jiezhong Qiu · Chi Wang · Ben Liao · Richard Peng · Jie Tang -
2020 Poster: CogLTX: Applying BERT to Long Texts »
Ming Ding · Chang Zhou · Hongxia Yang · Jie Tang -
2018 Poster: Bandit Learning with Implicit Feedback »
Yi Qi · Qingyun Wu · Hongning Wang · Jie Tang · Maosong Sun