Timezone: »
Large-scale pre-trained language models have achieved tremendous success across a wide range of natural language understanding (NLU) tasks, even surpassing human performance. However, recent studies reveal that the robustness of these models can be challenged by carefully crafted textual adversarial examples. While several individual datasets have been proposed to evaluate model robustness, a principled and comprehensive benchmark is still missing. In this paper, we present Adversarial GLUE (AdvGLUE), a new multi-task benchmark to quantitatively and thoroughly explore and evaluate the vulnerabilities of modern large-scale language models under various types of adversarial attacks. In particular, we systematically apply 14 textual adversarial attack methods to GLUE tasks to construct AdvGLUE, which is further validated by humans for reliable annotations. Our findings are summarized as follows. (i) Most existing adversarial attack algorithms are prone to generating invalid or ambiguous adversarial examples, with around 90% of them either changing the original semantic meanings or misleading human annotators as well. Therefore, we perform a careful filtering process to curate a high-quality benchmark. (ii) All the language models and robust training methods we tested perform poorly on AdvGLUE, with scores lagging far behind the benign accuracy. We hope our work will motivate the development of new adversarial attacks that are more stealthy and semantic-preserving, as well as new robust language models against sophisticated adversarial attacks. AdvGLUE is available at https://adversarialglue.github.io.
Author Information
Boxin Wang (Department of Computer Science, University of Illinois, Urbana Champaign)
Chejian Xu (Zhejiang University)
Shuohang Wang (Microsoft)
Zhe Gan (Duke University)
Yu Cheng (Microsoft Research)
Jianfeng Gao (Microsoft Research, Redmond, WA)
Ahmed Awadallah (MICROSOFT RESEARCH)
I am passionate about using AI and Machine Learning to create intelligent user experiences that connect people to information. I lead a research and incubation team in Microsoft Research Technologies. Our work at the Language and Information Technologies team is focused on creating language understanding and user modeling technologies to enable intelligent experiences in multiple products. Our work has been shipped in several products such as Bing, Cortana, Office 365, and Dynamics 365. I have hands-on experience building and shipping state-of-the-art ML/AI algorithms. I also have experience building and managing world-class teams of scientists and engineers. My research interests are at the intersection of machine learning, language understanding, and information retrieval. A key part of my work involves using Machine Learning to model large-scale text and user behavior data with applications to intelligent assistants, search, user modeling, quality evaluation, recommendation and personalization. I received my Ph.D. from the department of Computer Science and Engineering at the University of Michigan Ann Arbor. I Invented, published, and patented new approaches in language understanding, information retrieval and machine learning. I published 60+ peer-reviewed papers in these areas and I am an inventor on 20+ (granted and pending) patents.
Bo Li (UIUC)
More from the Same Authors
-
2021 : VALUE: A Multi-Task Benchmark for Video-and-Language Understanding Evaluation »
Linjie Li · Jie Lei · Zhe Gan · Licheng Yu · Yen-Chun Chen · Rohit Pillai · Yu Cheng · Luowei Zhou · Xin Wang · William Yang Wang · Tamara L Berg · Mohit Bansal · Jingjing Liu · Lijuan Wang · Zicheng Liu -
2021 Spotlight: Focal Attention for Long-Range Interactions in Vision Transformers »
Jianwei Yang · Chunyuan Li · Pengchuan Zhang · Xiyang Dai · Bin Xiao · Lu Yuan · Jianfeng Gao -
2021 : Few-Shot Learning Evaluation in Natural Language Understanding »
Subhabrata Mukherjee · Xiaodong Liu · Guoqing Zheng · Saghar Hosseini · Hao Cheng · Ge Yang · Christopher Meek · Ahmed Awadallah · Jianfeng Gao -
2021 : Certified Robustness for Free in Differentially Private Federated Learning »
Chulin Xie · Yunhui Long · Pin-Yu Chen · Krishnaram Kenthapadi · Bo Li -
2021 : RVFR: Robust Vertical Federated Learning via Feature Subspace Recovery »
Jing Liu · Chulin Xie · Krishnaram Kenthapadi · Sanmi Koyejo · Bo Li -
2021 : What Would Jiminy Cricket Do? Towards Agents That Behave Morally »
Dan Hendrycks · Mantas Mazeika · Andy Zou · Sahil Patel · Christine Zhu · Jesus Navarro · Dawn Song · Bo Li · Jacob Steinhardt -
2021 : Career and Life: Panel Discussion - Bo Li, Adriana Romero-Soriano, Devi Parikh, and Emily Denton »
Emily Denton · Devi Parikh · Bo Li · Adriana Romero -
2021 : Live Q&A with Bo Li »
Bo Li -
2021 : Invited talk – Trustworthy Machine Learning via Logic Inference, Bo Li »
Bo Li -
2021 : Adversarial GLUE: A Multi-Task Benchmark for Robustness Evaluation of Language Models »
Boxin Wang · Chejian Xu · Shuohang Wang · Zhe Gan · Yu Cheng · Jianfeng Gao · Ahmed Awadallah · Bo Li -
2021 Poster: Fairness via Representation Neutralization »
Mengnan Du · Subhabrata Mukherjee · Guanchu Wang · Ruixiang Tang · Ahmed Awadallah · Xia Hu -
2021 Poster: G-PATE: Scalable Differentially Private Data Generator via Private Aggregation of Teacher Discriminators »
Yunhui Long · Boxin Wang · Zhuolin Yang · Bhavya Kailkhura · Aston Zhang · Carl Gunter · Bo Li -
2021 Poster: Anti-Backdoor Learning: Training Clean Models on Poisoned Data »
Yige Li · Xixiang Lyu · Nodens Koren · Lingjuan Lyu · Bo Li · Xingjun Ma -
2021 Poster: Focal Attention for Long-Range Interactions in Vision Transformers »
Jianwei Yang · Chunyuan Li · Pengchuan Zhang · Xiyang Dai · Bin Xiao · Lu Yuan · Jianfeng Gao -
2021 Poster: Adversarial Attack Generation Empowered by Min-Max Optimization »
Jingkang Wang · Tianyun Zhang · Sijia Liu · Pin-Yu Chen · Jiacen Xu · Makan Fardad · Bo Li -
2021 Poster: Chasing Sparsity in Vision Transformers: An End-to-End Exploration »
Tianlong Chen · Yu Cheng · Zhe Gan · Lu Yuan · Lei Zhang · Zhangyang Wang -
2021 Poster: Data-Efficient GAN Training Beyond (Just) Augmentations: A Lottery Ticket Perspective »
Tianlong Chen · Yu Cheng · Zhe Gan · Jingjing Liu · Zhangyang Wang -
2021 : Reconnaissance Blind Chess + Q&A »
Ryan Gardner · Gino Perrotta · Corey Lowman · Casey Richardson · Andrew Newman · Jared Markowitz · Nathan Drenkow · Bart Paulhamus · Ashley J Llorens · Todd Neller · Raman Arora · Bo Li · Mykel J Kochenderfer -
2021 Poster: The Elastic Lottery Ticket Hypothesis »
Xiaohan Chen · Yu Cheng · Shuohang Wang · Zhe Gan · Jingjing Liu · Zhangyang Wang -
2021 Poster: Tuning Large Neural Networks via Zero-Shot Hyperparameter Transfer »
Ge Yang · Edward Hu · Igor Babuschkin · Szymon Sidor · Xiaodong Liu · David Farhi · Nick Ryder · Jakub Pachocki · Weizhu Chen · Jianfeng Gao -
2021 : WebQA Competition + Q&A »
Yingshan CHANG · Yonatan Bisk · Mridu Narang · Levi Melnick · Jianfeng Gao · Hisami Suzuki · Guihong Cao -
2021 Poster: TRS: Transferability Reduced Ensemble via Promoting Gradient Diversity and Model Smoothness »
Zhuolin Yang · Linyi Li · Xiaojun Xu · Shiliang Zuo · Qian Chen · Pan Zhou · Benjamin Rubinstein · Ce Zhang · Bo Li -
2020 Workshop: Workshop on Dataset Curation and Security »
Nathalie Baracaldo Angel · Yonatan Bisk · Avrim Blum · Michael Curry · John Dickerson · Micah Goldblum · Tom Goldstein · Bo Li · Avi Schwarzschild -
2020 Poster: Robust Deep Reinforcement Learning against Adversarial Perturbations on State Observations »
Huan Zhang · Hongge Chen · Chaowei Xiao · Bo Li · Mingyan Liu · Duane Boning · Cho-Jui Hsieh -
2020 Spotlight: Robust Deep Reinforcement Learning against Adversarial Perturbations on State Observations »
Huan Zhang · Hongge Chen · Chaowei Xiao · Bo Li · Mingyan Liu · Duane Boning · Cho-Jui Hsieh -
2020 Poster: On Convergence of Nearest Neighbor Classifiers over Feature Transformations »
Luka Rimanic · Cedric Renggli · Bo Li · Ce Zhang -
2019 Poster: Unified Language Model Pre-training for Natural Language Understanding and Generation »
Li Dong · Nan Yang · Wenhui Wang · Furu Wei · Xiaodong Liu · Yu Wang · Jianfeng Gao · Ming Zhou · Hsiao-Wuen Hon -
2018 Poster: M-Walk: Learning to Walk over Graphs using Monte Carlo Tree Search »
Yelong Shen · Jianshu Chen · Po-Sen Huang · Yuqing Guo · Jianfeng Gao -
2018 Poster: Dialog-based Interactive Image Retrieval »
Xiaoxiao Guo · Hui Wu · Yu Cheng · Steven Rennie · Gerald Tesauro · Rogerio Feris -
2018 Poster: Generating Informative and Diverse Conversational Responses via Adversarial Information Maximization »
Yizhe Zhang · Michel Galley · Jianfeng Gao · Zhe Gan · Xiujun Li · Chris Brockett · Bill Dolan -
2018 Poster: Navigating with Graph Representations for Fast and Scalable Decoding of Neural Language Models »
Minjia Zhang · Wenhan Wang · Xiaodong Liu · Jianfeng Gao · Yuxiong He -
2017 : Invited Talk: Microsoft (Asli and Jianfeng) »
Jianfeng Gao -
2017 Poster: Triangle Generative Adversarial Networks »
Zhe Gan · Liqun Chen · Weiyao Wang · Yuchen Pu · Yizhe Zhang · Hao Liu · Chunyuan Li · Lawrence Carin -
2017 Poster: VAE Learning via Stein Variational Gradient Descent »
Yuchen Pu · Zhe Gan · Ricardo Henao · Chunyuan Li · Shaobo Han · Lawrence Carin -
2017 Poster: Deconvolutional Paragraph Representation Learning »
Yizhe Zhang · Dinghan Shen · Guoyin Wang · Zhe Gan · Ricardo Henao · Lawrence Carin -
2017 Poster: Adversarial Symmetric Variational Autoencoder »
Yuchen Pu · Weiyao Wang · Ricardo Henao · Liqun Chen · Zhe Gan · Chunyuan Li · Lawrence Carin -
2015 Poster: End-to-end Learning of LDA by Mirror-Descent Back Propagation over a Deep Architecture »
Jianshu Chen · Ji He · Yelong Shen · Lin Xiao · Xiaodong He · Jianfeng Gao · Xinying Song · Li Deng