`

Timezone: »

 
WaveFake: A Data Set to Facilitate Audio Deepfake Detection
Joel Frank · Lea Schönherr

Deep generative modeling has the potential to cause significant harm to society. Recognizing this threat, a magnitude of research into detecting so-called "Deepfakes'' has emerged. This research most often focuses on the image domain, while studies exploring generated audio signals have---so-far---been neglected. In this paper we make three key contributions to narrow this gap. First, we provide researchers with an introduction to common signal processing techniques used for analyzing audio signals. Second, we present a novel data set, for which we collected nine sample sets from five different network architectures, spanning two languages. Finally, we supply practitioners with two baseline models, adopted from the signal processing community, to facilitate further research in this area.

Author Information

Joel Frank (Ruhr-Universtät Bochum)
Lea Schönherr (Ruhr University Bochum)

More from the Same Authors

  • 2018 : Coffee break + posters 1 »
    Samuel Myer · Wei-Ning Hsu · Jialu Li · Monica Dinculescu · Lea Schönherr · Ehsan Hosseini-Asl · Skyler Seto · Oiwi Parker Jones · Imran Sheikh · Thomas Manzini · Yonatan Belinkov · Nadir Durrani · Alexander Amini · Johanna Hansen · Gabi Shalev · Jamin Shin · Paul Smolensky · Lisa Fan · Zining Zhu · Hamid Eghbal-zadeh · Benjamin Baer · Abelino Jimenez · Joao Felipe Santos · Jan Kremer · Erik McDermott · Andreas Krug · Tzeviya S Fuchs · Shuai Tang · Brandon Carter · David Gifford · Albert Zeyer · André Merboldt · Krishna Pillutla · Katherine Lee · Titouan Parcollet · Orhan Firat · Gautam Bhattacharya · JAHANGIR ALAM · Mirco Ravanelli