Timezone: »

Occluded Video Instance Segmentation: Dataset and ICCV 2021 Challenge
Jiyang Qi · Yan Gao · Yao Hu · Xinggang Wang · Xiaoyu Liu · Xiang Bai · Serge Belongie · Alan Yuille · Philip Torr · Song Bai
Event URL: https://openreview.net/forum?id=IfzTefIU_3j »

Although deep learning methods have achieved advanced video object recognition performance in recent years, perceiving heavily occluded objects in a video is still a very challenging task. To promote the development of occlusion understanding, we collect a large-scale dataset called OVIS for video instance segmentation in the occluded scenario. OVIS consists of 296k high-quality instance masks and 901 occluded scenes. While our human vision systems can perceive those occluded objects by contextual reasoning and association, our experiments suggest that current video understanding systems cannot. On the OVIS dataset, all baseline methods encounter a significant performance degradation of about 80\% in the heavily occluded object group, which demonstrates that there is still a long way to go in understanding obscured objects and videos in a complex real-world scenario. To facilitate the research on new paradigms for video understanding systems, we launched a challenge basing on the OVIS dataset. The submitted top-performing algorithms have achieved much higher performance than our baselines. In this paper, we will introduce the OVIS dataset and further dissect it by analyzing the results of baselines and submitted methods. The OVIS dataset and challenge information can be found at \url{http://songbai.site/ovis}.

Author Information

Jiyang Qi (Huazhong University of Science and Technology)
Yan Gao (, Chinese Academy of Sciences)
Yao Hu (Zhejiang University)
Xinggang Wang (Huazhong University of Science and Technology)
Xiaoyu Liu (Tencent AI Lab)
Xiang Bai (Huazhong University of Science and Technology)
Serge Belongie (Cornell University)
Alan Yuille (JHU)
Philip Torr (University of Oxford)
Song Bai (University of Oxford)

More from the Same Authors