Timezone: »

An Empirical Investigation of Representation Learning for Imitation
Cynthia Chen · Sam Toyer · Cody Wild · Scott Emmons · Ian Fischer · Kuang-Huei Lee · Neel Alex · Steven Wang · Ping Luo · Stuart Russell · Pieter Abbeel · Rohin Shah
Event URL: https://openreview.net/forum?id=kBNhgqXatI »

Imitation learning often needs a large demonstration set in order to handle the full range of situations that an agent might find itself in during deployment. However, collecting expert demonstrations can be expensive. Recent work in vision, reinforcement learning, and NLP has shown that auxiliary representation learning objectives can reduce the need for large amounts of expensive, task-specific data. Our Empirical Investigation of Representation Learning for Imitation (EIRLI) investigates whether similar benefits apply to imitation learning. We propose a modular framework for constructing representation learning algorithms, then use our framework to evaluate the utility of representation learning for imitation across several environment suites. In the settings we evaluate, we find that existing algorithms for image-based representation learning provide limited value relative to a well-tuned baseline with image augmentations. To explain this result, we investigate differences between imitation learning and other settings where representation learning has provided significant benefit, such as image classification. Finally, we release a well-documented codebase which both replicates our findings and provides a modular framework for creating new representation learning algorithms out of reusable components.

Author Information

Cynthia Chen (The University of Hong Kong)
Sam Toyer (UC Berkeley)
Cody Wild (Google Research)
Scott Emmons (UC Berkeley)
Ian Fischer (Google)
Kuang-Huei Lee (Google Brain)
Neel Alex (University of Cambridge)
Steven Wang (UC Berkeley)
Ping Luo (The University of Hong Kong)
Stuart Russell (UC Berkeley)
Pieter Abbeel (UC Berkeley & Covariant)

Pieter Abbeel is Professor and Director of the Robot Learning Lab at UC Berkeley [2008- ], Co-Director of the Berkeley AI Research (BAIR) Lab, Co-Founder of covariant.ai [2017- ], Co-Founder of Gradescope [2014- ], Advisor to OpenAI, Founding Faculty Partner AI@TheHouse venture fund, Advisor to many AI/Robotics start-ups. He works in machine learning and robotics. In particular his research focuses on making robots learn from people (apprenticeship learning), how to make robots learn through their own trial and error (reinforcement learning), and how to speed up skill acquisition through learning-to-learn (meta-learning). His robots have learned advanced helicopter aerobatics, knot-tying, basic assembly, organizing laundry, locomotion, and vision-based robotic manipulation. He has won numerous awards, including best paper awards at ICML, NIPS and ICRA, early career awards from NSF, Darpa, ONR, AFOSR, Sloan, TR35, IEEE, and the Presidential Early Career Award for Scientists and Engineers (PECASE). Pieter's work is frequently featured in the popular press, including New York Times, BBC, Bloomberg, Wall Street Journal, Wired, Forbes, Tech Review, NPR.

Rohin Shah (DeepMind)

Rohin is a Research Scientist on the technical AGI safety team at DeepMind. He completed his PhD at the Center for Human-Compatible AI at UC Berkeley, where he worked on building AI systems that can learn to assist a human user, even if they don't initially know what the user wants. He is particularly interested in big picture questions about artificial intelligence. What techniques will we use to build human-level AI systems? How will their deployment affect the world? What can we do to make this deployment go better? He writes up summaries and thoughts about recent work tackling these questions in the Alignment Newsletter.

More from the Same Authors