`

Timezone: »

 
STAR: A Benchmark for Situated Reasoning in Real-World Videos
Bo Wu · Shoubin Yu · Zhenfang Chen · Josh Tenenbaum · Chuang Gan
Event URL: https://openreview.net/forum?id=EfgNF5-ZAjM »

Reasoning in the real world is not divorced from situations. How to capture the present knowledge from surrounding situations and perform reasoning accordingly is crucial and challenging for machine intelligence. This paper introduces a new benchmark that evaluates the situated reasoning ability via situation abstraction and logic-grounded question answering for real-world videos, called Situated Reasoning in Real-World Videos (STAR). This benchmark is built upon the real-world videos associated with human actions or interactions, which are naturally dynamic, compositional, and logical. The dataset includes four types of questions, including interaction, sequence, prediction, and feasibility. We represent the situations in real-world videos by hyper-graphs connecting extracted atomic entities and relations (e.g., actions, persons, objects, and relationships). Besides visual perception, situated reasoning also requires structured situation comprehension and logical reasoning. Questions and answers are procedurally generated. The answering logic of each question is represented by a functional program based on a situation hyper-graph. We compare various existing video reasoning models and find that they all struggle on this challenging situated reasoning task. We further propose a diagnostic neuro-symbolic model that can disentangle visual perception, situation abstraction, language understanding, and functional reasoning to understand the challenges of this benchmark.

Author Information

Bo Wu (MIT-IBM Watson AI Lab)
Shoubin Yu (Shanghai Jiao Tong University)
Zhenfang Chen (The University of Hong Kong)
Josh Tenenbaum (MIT)

Josh Tenenbaum is an Associate Professor of Computational Cognitive Science at MIT in the Department of Brain and Cognitive Sciences and the Computer Science and Artificial Intelligence Laboratory (CSAIL). He received his PhD from MIT in 1999, and was an Assistant Professor at Stanford University from 1999 to 2002. He studies learning and inference in humans and machines, with the twin goals of understanding human intelligence in computational terms and bringing computers closer to human capacities. He focuses on problems of inductive generalization from limited data -- learning concepts and word meanings, inferring causal relations or goals -- and learning abstract knowledge that supports these inductive leaps in the form of probabilistic generative models or 'intuitive theories'. He has also developed several novel machine learning methods inspired by human learning and perception, most notably Isomap, an approach to unsupervised learning of nonlinear manifolds in high-dimensional data. He has been Associate Editor for the journal Cognitive Science, has been active on program committees for the CogSci and NIPS conferences, and has co-organized a number of workshops, tutorials and summer schools in human and machine learning. Several of his papers have received outstanding paper awards or best student paper awards at the IEEE Computer Vision and Pattern Recognition (CVPR), NIPS, and Cognitive Science conferences. He is the recipient of the New Investigator Award from the Society for Mathematical Psychology (2005), the Early Investigator Award from the Society of Experimental Psychologists (2007), and the Distinguished Scientific Award for Early Career Contribution to Psychology (in the area of cognition and human learning) from the American Psychological Association (2008).

Chuang Gan (MIT-IBM Watson AI Lab)

More from the Same Authors